AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuu...AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuum,low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient.Structures and morphologies of the films are analyzed by X-ray diffraction(XRD) and atomic force microscopy(AFM).The hardness and Young's modulus are investigated by the nanoindenter.The experimental results indicate that the(100) and(110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness(Rrms) of the film decreases gradually with the increase of the cooling rate.The maximum values of the hardness and Young modulus are obtained by cooling in low vacuum under deposition gas ambient.The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation.展开更多
Spin-orbit coupled Bosonic atoms confined in external potentials open up new avenues for quantumstate manipulation and will contribute to the design and exploration of novel quantum devices.Here we consider a quasi-tw...Spin-orbit coupled Bosonic atoms confined in external potentials open up new avenues for quantumstate manipulation and will contribute to the design and exploration of novel quantum devices.Here we consider a quasi-two-dimensional spin-orbit coupled Bose-Einstein condensate confined in an external harmonic potential,with emphasis on the effects of anisotropic spin-orbit coupling on the equilibrium ground-state structure of such a system.For the cases with spin-orbit coupling solely in x- or y-axis direction,the ground-state structure can develop to the well-known standing wave phase,in which the two components always form an alternative density arrangement.For a two-dimensional anisotropic spin-orbit coupling,the separated lumps first become bend,then form two rows of stripe structure along y direction with further increasing the strength of spin-orbit coupling in x-direction.Furthermore,the distance between these two rows of stripe structure is also investigated in detail.展开更多
基金supported by the National Natural Science Foundation of China (No.50972105)Tianjin Natural Science Foundation (Nos.09JCZDJC16500,08JCZDJC22700 and 10SYSYJC27700)
文摘AlN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency(RF) magnetron sputtering method.The post-processing is carried out under the cooling conditions including high vacuum,low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient.Structures and morphologies of the films are analyzed by X-ray diffraction(XRD) and atomic force microscopy(AFM).The hardness and Young's modulus are investigated by the nanoindenter.The experimental results indicate that the(100) and(110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness(Rrms) of the film decreases gradually with the increase of the cooling rate.The maximum values of the hardness and Young modulus are obtained by cooling in low vacuum under deposition gas ambient.The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation.
基金Supported by National Natural Science Foundation of China under Grant No.61361002the Applied Fundamental Research Projects of Yunnan Province under Grant No.2013FZ121
文摘Spin-orbit coupled Bosonic atoms confined in external potentials open up new avenues for quantumstate manipulation and will contribute to the design and exploration of novel quantum devices.Here we consider a quasi-two-dimensional spin-orbit coupled Bose-Einstein condensate confined in an external harmonic potential,with emphasis on the effects of anisotropic spin-orbit coupling on the equilibrium ground-state structure of such a system.For the cases with spin-orbit coupling solely in x- or y-axis direction,the ground-state structure can develop to the well-known standing wave phase,in which the two components always form an alternative density arrangement.For a two-dimensional anisotropic spin-orbit coupling,the separated lumps first become bend,then form two rows of stripe structure along y direction with further increasing the strength of spin-orbit coupling in x-direction.Furthermore,the distance between these two rows of stripe structure is also investigated in detail.