Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the...Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the current vehicle struc- ture and compartment packaging based on the areas that influence performance of automobile offset deformable barrier impact, such as the side rail, mounting, storage battery packaging,etc. It is proved that dO % offset crash simulation result of one certain car is well-correlated with the physical test. Optimization cases meet the crash performance requirements. The objec- tive of the analysis is to guide structural design and improves a car' s crash safety performance.展开更多
In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinea...In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.展开更多
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘Front bumper, crash box and side rail are key body structural parts in front crash. Deformation space is affected by compartment packaging. The improvement suggestions are proposed to solve the problems existed in the current vehicle struc- ture and compartment packaging based on the areas that influence performance of automobile offset deformable barrier impact, such as the side rail, mounting, storage battery packaging,etc. It is proved that dO % offset crash simulation result of one certain car is well-correlated with the physical test. Optimization cases meet the crash performance requirements. The objec- tive of the analysis is to guide structural design and improves a car' s crash safety performance.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund under Grant No.BUAASKLSDE-09KF-04l+2 种基金Supported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.