An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar...An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.展开更多
Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, t...Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.展开更多
The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,t...The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures.展开更多
The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experim...The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE.展开更多
A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane aniso...A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.展开更多
基金Project(60806006) supported by the National Natural Science Foundation of China
文摘An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.
文摘Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.
基金the Science Challenge Project(Grant No.TZ2018002)the National Natural Science Foundation of China(Grant Nos.11972205 and 11722218)+1 种基金the National Key Research Development Program of China(Grant No.2017YFB0702003)Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province.
文摘The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures.
基金supported by the National Natural Science Foundation of China (Grant No. 11072215)the Fundamental Research Funds for the Central Universitiesthe Hong Kong Polytechnic University through the Development of Niche Areas Programme (Grant No. 1-BB95)
文摘The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE.
文摘A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.