In order to evaluate the carbonation life of newly-built concrete structures,two kinds of nondestructive methods are adopted to test the thickness of the concrete cover and the ultrasonic velocity of two newly-built t...In order to evaluate the carbonation life of newly-built concrete structures,two kinds of nondestructive methods are adopted to test the thickness of the concrete cover and the ultrasonic velocity of two newly-built tunnel structures.Simultaneously a probabilistic method is proposed based on the relationship between the accelerated carbonation rate and the ultrasonic velocity.This proposed method is applied to evaluate the carbonation related lives of two newly-built tunnels and the results indicate that even under nearly the same environment and CO2 combining conditions,there exits a big difference in the probabilistic carbonation lives between the two tunnels;i.e.,the probabilistic lives of Tunnel A and Tunnel B are 94.0% and 82.3% and the corresponding maximum discrepancies are 11.6% and 27.0%,respectively.Thus,it can be concluded that the scattered quality of the concrete cover is attributed to the differences in construction technique,which eventually leads to the diversity in the evaluated probabilistic carbonation lives of the two tunnels.展开更多
The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The propos...The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The proposed scheme divides feature definition into application level, form level and geometric level, and provides links between different levels with feature semantics interpretation and enhanced geometric face adjacent graph. respectively. The results not only enable feature definition to abate from the specific dependence and become more extensive, but also provide a theoretical foundation for establishing the concurrent feature based design process model.展开更多
This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions betwe...This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.展开更多
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
In high seismic regions of the world, including Turkey, there are too many low-rise residential buildings made of rigid masonry walls or flexible moment-resistant frames with brittle masonry partitioning walls. During...In high seismic regions of the world, including Turkey, there are too many low-rise residential buildings made of rigid masonry walls or flexible moment-resistant frames with brittle masonry partitioning walls. During even moderate earthquakes, these buildings suffer heavy damages and brittle failures causing hundreds if not thousands of people to lose their lives and homes. Hence it is essential to build a house with lightweight materials that have an earthquake resistance with a proper safety. Recently in some countries such as USA, Italy, China and Turkey; a new building system called 3D wire panel building system use prefabricated lightweight panels to construct low-rise buildings up to three stories. The panels are fabricated from polystyrene, steel, and shotcrete concrete .The lightweight of these panels, easy handling, high construction speed, good heat insulation properties, in addition to their low cost by avoiding formwork and need for skilled workers make it an acceptable construction practice. In the literature, there is no enough information on the design rules of this new building system .This paper presents some hits on the design rules and some applications in Turkey such as construction of a factory, construction of a three story villa and construction of mosque domes.展开更多
The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated l...The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.展开更多
基金Key Construction Project of Nanjing Yangtze River Tunnel(No.7612005822)the National Basic Research Program of China(973Program)(No.2009CB623203).
文摘In order to evaluate the carbonation life of newly-built concrete structures,two kinds of nondestructive methods are adopted to test the thickness of the concrete cover and the ultrasonic velocity of two newly-built tunnel structures.Simultaneously a probabilistic method is proposed based on the relationship between the accelerated carbonation rate and the ultrasonic velocity.This proposed method is applied to evaluate the carbonation related lives of two newly-built tunnels and the results indicate that even under nearly the same environment and CO2 combining conditions,there exits a big difference in the probabilistic carbonation lives between the two tunnels;i.e.,the probabilistic lives of Tunnel A and Tunnel B are 94.0% and 82.3% and the corresponding maximum discrepancies are 11.6% and 27.0%,respectively.Thus,it can be concluded that the scattered quality of the concrete cover is attributed to the differences in construction technique,which eventually leads to the diversity in the evaluated probabilistic carbonation lives of the two tunnels.
文摘The adaptability of features definition to applications is an essential condition for implementing feature based design. This paper makes attempt to present a hierarchical definition structure of features. The proposed scheme divides feature definition into application level, form level and geometric level, and provides links between different levels with feature semantics interpretation and enhanced geometric face adjacent graph. respectively. The results not only enable feature definition to abate from the specific dependence and become more extensive, but also provide a theoretical foundation for establishing the concurrent feature based design process model.
基金Project supported by the National Natural Science Foundation of China (No. 50378041) and the Specialized Research Fund for theDoctoral Program of Higher Education (No. 20030487016), China
文摘This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
文摘In high seismic regions of the world, including Turkey, there are too many low-rise residential buildings made of rigid masonry walls or flexible moment-resistant frames with brittle masonry partitioning walls. During even moderate earthquakes, these buildings suffer heavy damages and brittle failures causing hundreds if not thousands of people to lose their lives and homes. Hence it is essential to build a house with lightweight materials that have an earthquake resistance with a proper safety. Recently in some countries such as USA, Italy, China and Turkey; a new building system called 3D wire panel building system use prefabricated lightweight panels to construct low-rise buildings up to three stories. The panels are fabricated from polystyrene, steel, and shotcrete concrete .The lightweight of these panels, easy handling, high construction speed, good heat insulation properties, in addition to their low cost by avoiding formwork and need for skilled workers make it an acceptable construction practice. In the literature, there is no enough information on the design rules of this new building system .This paper presents some hits on the design rules and some applications in Turkey such as construction of a factory, construction of a three story villa and construction of mosque domes.
基金Supported by the National Natural Science Foundation of China(No.51379142)
文摘The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.