The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
In view of the recent technological development, the pursuit of safehigh-precision structural designs has been the goal of most structural designers. To bridge the gapbetween the construction theories and the actual c...In view of the recent technological development, the pursuit of safehigh-precision structural designs has been the goal of most structural designers. To bridge the gapbetween the construction theories and the actual construction techniques, safety factors are adoptedfor designing the strength loading of structural members. If safety factors are too conservative,the extra building materials necessary will result in high construction cost. Thus, there has been atendency in the construction field to derive a precise buckling load analysis model of member inorder to establish accurate safety factors. A numerical analysis model, using modal analysis toacquire the dynamic function calculated by dynamic parameter to get the buckling load of member, isproposed in this paper. The fixed and simple supports around the circular plate are analyzed by thisproposed method. And then, the Monte Carlo method and the normal distribution method are used forrandom sampling and measuring errors of numerical simulation respectively. The analysis resultsindicated that this proposed method only needs to apply modal parameters of 7 X 7 test points toobtain a theoretical value of buckling load. Moreover, the analysis method of inequality-distanttest points produces better analysis results than the other methods.展开更多
Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs alway...Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs always exist in high-rise building structures. In order to obtain the ultimate loading capacity of continuous composite slabs, the full scale test on slab specimens with high cost need to be carried out. This paper presented an analytical model for calculating the ultimate loading capacity of continuous composite slabs. Only the small-scale slide block test needed to be carried out for determining some mechanical parameters, resulting in less cost, compared with the conventional m-k test method. Various load conditions and parameters were considered in the analytical model. The comparison between test results and predicted results showed that the proposed method had enough precision. Furthermore, the simplified method was also proposed for practical design.展开更多
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
文摘In view of the recent technological development, the pursuit of safehigh-precision structural designs has been the goal of most structural designers. To bridge the gapbetween the construction theories and the actual construction techniques, safety factors are adoptedfor designing the strength loading of structural members. If safety factors are too conservative,the extra building materials necessary will result in high construction cost. Thus, there has been atendency in the construction field to derive a precise buckling load analysis model of member inorder to establish accurate safety factors. A numerical analysis model, using modal analysis toacquire the dynamic function calculated by dynamic parameter to get the buckling load of member, isproposed in this paper. The fixed and simple supports around the circular plate are analyzed by thisproposed method. And then, the Monte Carlo method and the normal distribution method are used forrandom sampling and measuring errors of numerical simulation respectively. The analysis resultsindicated that this proposed method only needs to apply modal parameters of 7 X 7 test points toobtain a theoretical value of buckling load. Moreover, the analysis method of inequality-distanttest points produces better analysis results than the other methods.
文摘Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs always exist in high-rise building structures. In order to obtain the ultimate loading capacity of continuous composite slabs, the full scale test on slab specimens with high cost need to be carried out. This paper presented an analytical model for calculating the ultimate loading capacity of continuous composite slabs. Only the small-scale slide block test needed to be carried out for determining some mechanical parameters, resulting in less cost, compared with the conventional m-k test method. Various load conditions and parameters were considered in the analytical model. The comparison between test results and predicted results showed that the proposed method had enough precision. Furthermore, the simplified method was also proposed for practical design.