To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was ...To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa.展开更多
The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be def...The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.展开更多
基金Project(07018) supported by the College Discipline Innovation Wisdom Plan in China
文摘To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa.
文摘The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.