自上而下的治理现代化浪潮和自下而上的传播社会化浪潮,两大趋势正在引领国家政治重心的转移和社会传播格局的转型,社会化媒体成为现代政府实现善治的重要契机、必然环境、关键工具、创新平台和特定对象的同时,也因其复杂性为各国政府...自上而下的治理现代化浪潮和自下而上的传播社会化浪潮,两大趋势正在引领国家政治重心的转移和社会传播格局的转型,社会化媒体成为现代政府实现善治的重要契机、必然环境、关键工具、创新平台和特定对象的同时,也因其复杂性为各国政府善治带来了不可避免的风险和难以预料的陷阱。全球政府社会化媒体传播始于2007年,相关研究至2022年已有15年,本文基于Web of Science(WOS)数据库并运用LDA隐含主题识别,对其研究进程、主题和空间维度展开分析,从而全方位地探知、呈现、概括全球政府介入社会化媒体的研究格局,提出基于善治目标的全球政府社会化媒体传播研究空间构想。展开更多
The notion of an ideal family of weighted subspaces of a discrete metric space X with bounded geometry is introduced. It is shown that, if X has Yu’s property A, the ideal structure of the Roe algebra of X with coeff...The notion of an ideal family of weighted subspaces of a discrete metric space X with bounded geometry is introduced. It is shown that, if X has Yu’s property A, the ideal structure of the Roe algebra of X with coefficients in B(H) is completely characterized by the ideal families of weighted subspaces of X, where B(H) denotes the C*-algebra of bounded linear operators on a separable Hilbert space H.展开更多
文摘自上而下的治理现代化浪潮和自下而上的传播社会化浪潮,两大趋势正在引领国家政治重心的转移和社会传播格局的转型,社会化媒体成为现代政府实现善治的重要契机、必然环境、关键工具、创新平台和特定对象的同时,也因其复杂性为各国政府善治带来了不可避免的风险和难以预料的陷阱。全球政府社会化媒体传播始于2007年,相关研究至2022年已有15年,本文基于Web of Science(WOS)数据库并运用LDA隐含主题识别,对其研究进程、主题和空间维度展开分析,从而全方位地探知、呈现、概括全球政府介入社会化媒体的研究格局,提出基于善治目标的全球政府社会化媒体传播研究空间构想。
基金Project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200416)the Program for New Century Excellent Talents in University of China (No. 06-0420)+2 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars (No.2008-890)the Dawn Light Project of Shanghai Municipal Education Commission (No. 07SG38)the Shanghai Pujiang Program (No. 08PJ14006).
文摘The notion of an ideal family of weighted subspaces of a discrete metric space X with bounded geometry is introduced. It is shown that, if X has Yu’s property A, the ideal structure of the Roe algebra of X with coefficients in B(H) is completely characterized by the ideal families of weighted subspaces of X, where B(H) denotes the C*-algebra of bounded linear operators on a separable Hilbert space H.