Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But th...Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But there are also many orthogonal arrays, especially mixed-level or asymmetrical which can not be obtained by the usual difference matrices. In order to construct these asymmetrical orthogonal arrays, a class of special matrices, so-called generalized difference matrices, were discovered by Zhang(1989, 1990, 1993) by the orthogonal decompositions of projective matrices. In this article, an interesting equivalent relationship between the orthogonal arrays and the generalized difference matrices is presented. As an application, a family of orthogonal arrays of run sizes 4p2, such as L36(6^13^42^10), are constructed.展开更多
In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
Orthogonal arrays (OAs), mixed level or fixed level (asymmetric or symmetric), are useful in the design of various experiments. They are also a fundamental tool in the construction of various combinatorial configurati...Orthogonal arrays (OAs), mixed level or fixed level (asymmetric or symmetric), are useful in the design of various experiments. They are also a fundamental tool in the construction of various combinatorial configurations. In this paper, we establish a general "expansive replacement method" for constructing mixedlevel OAs of an arbitrary strength. As a consequence, a positive answer to the question about orthogonal arrays posed by Hedayat, Sloane and Stufken is given. Some series of mixed level OAs of strength ≥3 are produced.展开更多
基金the National Science Foundations of China(10571045)the National Science Foundations of Henan Province(02243700510211063100)
文摘Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But there are also many orthogonal arrays, especially mixed-level or asymmetrical which can not be obtained by the usual difference matrices. In order to construct these asymmetrical orthogonal arrays, a class of special matrices, so-called generalized difference matrices, were discovered by Zhang(1989, 1990, 1993) by the orthogonal decompositions of projective matrices. In this article, an interesting equivalent relationship between the orthogonal arrays and the generalized difference matrices is presented. As an application, a family of orthogonal arrays of run sizes 4p2, such as L36(6^13^42^10), are constructed.
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.
基金supported by National Natural Science Foundation of China (Grant Nos.11271280 and 10831002)
文摘Orthogonal arrays (OAs), mixed level or fixed level (asymmetric or symmetric), are useful in the design of various experiments. They are also a fundamental tool in the construction of various combinatorial configurations. In this paper, we establish a general "expansive replacement method" for constructing mixedlevel OAs of an arbitrary strength. As a consequence, a positive answer to the question about orthogonal arrays posed by Hedayat, Sloane and Stufken is given. Some series of mixed level OAs of strength ≥3 are produced.