Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. T...Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.展开更多
When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use...When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.展开更多
According to topography of Yemen,most areas and villages are located at obligated crest,toe of mountain and under cliffs.Therefore Al-Huwayshah consisting of Tawilah sandstone group is characterized by steep slope rea...According to topography of Yemen,most areas and villages are located at obligated crest,toe of mountain and under cliffs.Therefore Al-Huwayshah consisting of Tawilah sandstone group is characterized by steep slope reach to 90° in some areas.This area is affected by strong tectonic movements and faults that occurred during the geological epochs.This effect enhances to find out fractures and joints as well as the rocks become brittle and ready to slide depending on the position of area.And there are some fractures and joints on the surface of the areas due to tectonic movement associated with opening the Red Sea and Gulf of Aden.The rainfalls,fractures,joints,earthquakes,gravity,vegetations,temperatures and human activities play a big role in the processes of rockfalls and landslides in this area.All those factors are considered as the basic causes and catalyzed factors for occurrence of rockfall in the studide area.In addition,the authors carried out laboratory test for many rock samples to get the physical properties of the rocks.展开更多
By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results ind...By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results indicate that the tectonic stress field in the research region is clearly variational in space and time: (1) The middling principal stress axis σ 2 is basically vertical. The maximum and minimum principal stress axes σ 1 and σ 2 are nearly horizontal, but the azimuths of σ 1 and σ 3 are inconsistent in different districts and periods. (2) Before the Tangshan earthquake in 1976, the three principal stress axes are uniform. The azimuth of maximum principal stress axis σ 1 is 68° (striking in a NEE-SWW direction). (3) After the Tangshan earthquake, the maximum principal stress axis σ 1 and minimum principal stress axis σ 3 have variations in different districts. In the northern area of North China and on the eastern side of the Tancheng-Lujiang fault zone, the maximum principal stress axis σ 1 is also striking in a NEE-SWW direction. Its azimuth is 68°. It is the same as that before the Tangshan earthquake. In the southern area of North China, the maximum principal stress axis σ 1 is striking in a E-W direction and its azimuth is 87°.展开更多
The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and...The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.展开更多
In this paper, we use the standard deviation method and the fixed mass method to study the self affine fractal and multi fractal features along two topographic profiles across different tectonic geomorphic elements in...In this paper, we use the standard deviation method and the fixed mass method to study the self affine fractal and multi fractal features along two topographic profiles across different tectonic geomorphic elements in the Tianshan area of Xinjiang region, China. The results show that in the studied scaling range, the two profiles display different scaling fractal features, and the form and value range of multi fractal spectra D q also show different characteristics. The study suggests that the landforms are not completely random, but are deterministically random. The fractal dimension values in different scaling ranges express the mode, intensity and spatial dimension of the endogenic and exogenic processes. Meanwhile, a boundary point between the macroscopic and microscopic scales of geomorphic process is suggested to be about 5 km. These results are of significance in quantitative study of geomorphic dynamics.展开更多
Based on the studies of earthquake activity, tectonic movement, crustal shortening rate, fault activity, local stress field and historical characteristics of strong earthquake activities in Xinjiang, we divide the sou...Based on the studies of earthquake activity, tectonic movement, crustal shortening rate, fault activity, local stress field and historical characteristics of strong earthquake activities in Xinjiang, we divide the south part of Xinjiang into 4 seismotectonic zones, namely, the eastern segment of south Tianshan seismic belt, the Kalpin block, the Kashi-Wuqia junction zone, and the west Kunlun Mountains seismic belt. Using earthquake catalogues from Xinjiang since 1900, and on the basis of integrity analysis of earthquake records in different magnitude ranges, the seismicity state of different seismotectonic zones is analyzed quantificationaUy by calculating the mean value of annual strain energy release, annual rate of earthquakes with different lower limits of magnitude, b-value, and the parameter m of accelerating strain release model. The characteristic indexes of seismicity state for each of the seismic tectonic zones are then determined, which provide a quantitative basis for earthquake tendency analysis and judgment.展开更多
Yingcheng Formation is a set of volcanic strata composed of lava rocks,volcanic clastic rocks and sedimentary rocks,filled in some fault depressions in Songliao Basin,early Cretaceous.The study about litho-facies succ...Yingcheng Formation is a set of volcanic strata composed of lava rocks,volcanic clastic rocks and sedimentary rocks,filled in some fault depressions in Songliao Basin,early Cretaceous.The study about litho-facies succession of Yingcheng Formation in the outcropped area of the southeast margin and in Xujiaweizi fault depression and its distribution based on analysis of seismic data,shows that the sequence of volcanic strata is quite different from the clastic sedimentary sequence.To study the architecture of volcanic sequence and its structural control of Yingcheng Formation in Songliao Basin,in this work,dividing of the volcanic sequence and dating of the sequence boundaries were finished firstly,then displacement and displacement rate of faults were calculated.The results show that,sample ages of top of the first member,the seconde member,and the third member are 127 Ma,115 Ma,110.7 Ma,respectively and sample age of the bottom of the third member is 114.7 Ma.The maximum displacement and displacement rate of the fault 1 are 3 km and 300 m/Ma,respectively,and those of the fault 2 are 3 km and 1000 m/Ma.Studies suggest that,the cooling unit of lava rock or pyroclastic rock is a basic genetic stratigraphic unit in volcanic sequence stratigraphy.Cooling units can construct a parasequence reflecting a volcanic eruption stage.A sequence was superimposed by some parasequences,responding to a volcanic active cycle.There are three types of volcanic sequences in Yingcheng Formation: type of explosion,type of effusion and type of mixed explosion-effusion.The surface of the volcanic sequence,an unconformity surface widely spread and traced in seismic profiles,is a base for analysis of volcanic sequence.The development of volcanic sequence was controlled by faulting,and the curves of fault displacement(rate)can reflect this control.The preservation of volcanic sequence was controlled by the type of volcanic structure and the regional subsidence,also different from that of the sedimentary.The type of volcanic structure of Xujiaweizi was a volcanic depression during the forming of Yingcheng Formation,and the breakdowns of volcanoes and structural subsidence were key factors in the volcanic sequences preservation.展开更多
The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and...The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.展开更多
The Longhai-Zhangpu coastal region lies in the so-called Golden Triangle area of southern Fujian Province. Tectonically, it is located on the southern segment of the Changle-Zhao'an fault zone, being one of the regio...The Longhai-Zhangpu coastal region lies in the so-called Golden Triangle area of southern Fujian Province. Tectonically, it is located on the southern segment of the Changle-Zhao'an fault zone, being one of the regions of Tertiary and Quaternary basaltic eruptions in China's southeast coastal area. In this area there are the Liuhui (Longhai County )-Jiangjun' ao (Zhangpu County) and Gangwei ( Longhai County )-Huxi ( Zhangpu County ) faults, along which basaltic eruption has occurred. The faults have been significantly active since the Quaternary, and several small to moderate earthquakes have occurred on the faults. In this paper, the basic characteristics of the late Quaternary activities and the combination relation of the faults are discussed on the basis of an analysis of along-fault basaltic eruptions during the late Tertiary to late Pleistocene, as well as the differential variation of geomorphic surfaces and marine deposits on both sides of the faults. The results show that the Liuhui-Jiangjun'ao fault is a late Pleistocene active fault. During the late Tertiary to late Pleistocene, three stages of basaltic eruptions occurred along the fault, among which the first stage occurred in the Pleistocene to early Pleistocene, the second stage in the middle Pleistocene and the third stage in the late Pleistocene. The Gangewei-Huxi fault can also be considered a late Pleistocene active fault. The elevation rate of the downthrown side of the fault is estimated to be 1. 11mm/a.These two faults have dissected the area into the Gangwei graben, south Taiwushan horst and the graben in the sea area to the east of Liuhul-Jiangjun'ao.展开更多
In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary res...In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary response relationship of the foreland basin to structural evolution: 1) a late Triassic Noric period;2) an early-Middle Jurassic period;3) a late Jurassic to early Cretaceous period;4) a late Cretaceous to Paleogene-Neogene period and 5) the Quaternary period. As well,we analyzed the sedimentary environment and lithologic features of every basin-forming period. The results show that there are several favorable source-reservoir-cap assemblages in our study area,making it a major region for future oil and gas exploration in China’s northern Sichuan basin.展开更多
This paper elucidates the relationship between landslides, geologic structures, and hydrothermal alteration zones based primarily on X-ray powder diffraction and uniaxial compressive strength tests on weakly weathered...This paper elucidates the relationship between landslides, geologic structures, and hydrothermal alteration zones based primarily on X-ray powder diffraction and uniaxial compressive strength tests on weakly weathered and hydrothermally altered rocks from the Ohekisawa-Shikerebembetsugawa landslide area in Teshikaga Town, Hokkaido, Japan. The OHS (Ohekisawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Shikerepe Formation within a homocline, and also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing mordenite zone. The SHS (Shikerebembetsugawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Hanakushibe Formation within wavy folds and was also controlled by a cap rock of Teshikaga Volcano Somma Lava. The SHS occurred also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing laumontite zone. The mechanical properties of smectite, smectite-bearing mordenite, and smectite-bearing laumontite zone weakly weathered rocks indicate that they are very weak, soft rocks. These landslides are regarded as HAZLs (hydrothermal alteration zone landslides). The hydrothermal alteration yielding smectite is thus closely related to these two ancient landslides, suggesting that the potential for HAZLs within a hydrothermal area can be assessed based on the swelling clay mineral-beating hydrothermal alteration types, dip slope, and cap rock.展开更多
Located at the west of the Linfen basin, the Luoyunshan piedmont fault zone controls the western boundary of the basin. According to the measurements of the terraces in eight gullies along the Luoyunshan fault zone, f...Located at the west of the Linfen basin, the Luoyunshan piedmont fault zone controls the western boundary of the basin. According to the measurements of the terraces in eight gullies along the Luoyunshan fault zone, five levels of terraces, namely T1~T5 have developed in these gullies. The heights of terraces T1, T2, T3, T4 and T5 are about 3m, 8~10m, about 20m, about 30m and 40~50m, respectively. The dating data of the terraces and investigation of the faulted landforms show that the Luoyunshan fault zone has experienced much activity since the Late Quaternary. The uplift rate of the terraces was 0.41mm/a since the Middle-Late Pleistocene, and 0.75mm/a since the Holocene. The increasing trend of uplift rate of the terraces along the Luoyunshan fault zone from the Middle-Late Pleistocene to Holocene indicates the tendency of gradual tectonic uplift of the fault zone since the late Quaternary. This is in good agreement with the increasing trend of subsidence rate of the Linfen basin from the Late Pleistocene to Holocene.展开更多
The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main...The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.展开更多
基金Project supported by the National Science and Technology Project of Tenth Five Years (No.2001BA605A06A)Science and Tech-nology Cooperation Program of SINOPEC (No.FYWX04-06),China
文摘Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.
基金Project(51274188)supported by the National Natural Science Foundation of China
文摘When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.
文摘According to topography of Yemen,most areas and villages are located at obligated crest,toe of mountain and under cliffs.Therefore Al-Huwayshah consisting of Tawilah sandstone group is characterized by steep slope reach to 90° in some areas.This area is affected by strong tectonic movements and faults that occurred during the geological epochs.This effect enhances to find out fractures and joints as well as the rocks become brittle and ready to slide depending on the position of area.And there are some fractures and joints on the surface of the areas due to tectonic movement associated with opening the Red Sea and Gulf of Aden.The rainfalls,fractures,joints,earthquakes,gravity,vegetations,temperatures and human activities play a big role in the processes of rockfalls and landslides in this area.All those factors are considered as the basic causes and catalyzed factors for occurrence of rockfall in the studide area.In addition,the authors carried out laboratory test for many rock samples to get the physical properties of the rocks.
文摘By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results indicate that the tectonic stress field in the research region is clearly variational in space and time: (1) The middling principal stress axis σ 2 is basically vertical. The maximum and minimum principal stress axes σ 1 and σ 2 are nearly horizontal, but the azimuths of σ 1 and σ 3 are inconsistent in different districts and periods. (2) Before the Tangshan earthquake in 1976, the three principal stress axes are uniform. The azimuth of maximum principal stress axis σ 1 is 68° (striking in a NEE-SWW direction). (3) After the Tangshan earthquake, the maximum principal stress axis σ 1 and minimum principal stress axis σ 3 have variations in different districts. In the northern area of North China and on the eastern side of the Tancheng-Lujiang fault zone, the maximum principal stress axis σ 1 is also striking in a NEE-SWW direction. Its azimuth is 68°. It is the same as that before the Tangshan earthquake. In the southern area of North China, the maximum principal stress axis σ 1 is striking in a E-W direction and its azimuth is 87°.
基金funded by the National Natural Science Foundation of China(Grant No.41001253)Chinese Postdoctoral Science Foundation(Grant No.2012M521717)National Science and Technology Major Project(Grant No.03-Y30B069001-13/15)
文摘The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.
基金Theworkisapartoftheresearchproject (2 0 0 0 0 7)supportedbytheEarthquakeScienceFoundationofXinjiangUygurAutonomousRegion China .
文摘In this paper, we use the standard deviation method and the fixed mass method to study the self affine fractal and multi fractal features along two topographic profiles across different tectonic geomorphic elements in the Tianshan area of Xinjiang region, China. The results show that in the studied scaling range, the two profiles display different scaling fractal features, and the form and value range of multi fractal spectra D q also show different characteristics. The study suggests that the landforms are not completely random, but are deterministically random. The fractal dimension values in different scaling ranges express the mode, intensity and spatial dimension of the endogenic and exogenic processes. Meanwhile, a boundary point between the macroscopic and microscopic scales of geomorphic process is suggested to be about 5 km. These results are of significance in quantitative study of geomorphic dynamics.
基金supported by the Special Scientific Research Funds for Earthquake Studies, entitled "Development of Dynamic Evaluation System of Seismicity State in the Chinese Continent (Grant No. 200708020)"
文摘Based on the studies of earthquake activity, tectonic movement, crustal shortening rate, fault activity, local stress field and historical characteristics of strong earthquake activities in Xinjiang, we divide the south part of Xinjiang into 4 seismotectonic zones, namely, the eastern segment of south Tianshan seismic belt, the Kalpin block, the Kashi-Wuqia junction zone, and the west Kunlun Mountains seismic belt. Using earthquake catalogues from Xinjiang since 1900, and on the basis of integrity analysis of earthquake records in different magnitude ranges, the seismicity state of different seismotectonic zones is analyzed quantificationaUy by calculating the mean value of annual strain energy release, annual rate of earthquakes with different lower limits of magnitude, b-value, and the parameter m of accelerating strain release model. The characteristic indexes of seismicity state for each of the seismic tectonic zones are then determined, which provide a quantitative basis for earthquake tendency analysis and judgment.
基金Project(40972074)supported by the National Natural Science Foundation of China
文摘Yingcheng Formation is a set of volcanic strata composed of lava rocks,volcanic clastic rocks and sedimentary rocks,filled in some fault depressions in Songliao Basin,early Cretaceous.The study about litho-facies succession of Yingcheng Formation in the outcropped area of the southeast margin and in Xujiaweizi fault depression and its distribution based on analysis of seismic data,shows that the sequence of volcanic strata is quite different from the clastic sedimentary sequence.To study the architecture of volcanic sequence and its structural control of Yingcheng Formation in Songliao Basin,in this work,dividing of the volcanic sequence and dating of the sequence boundaries were finished firstly,then displacement and displacement rate of faults were calculated.The results show that,sample ages of top of the first member,the seconde member,and the third member are 127 Ma,115 Ma,110.7 Ma,respectively and sample age of the bottom of the third member is 114.7 Ma.The maximum displacement and displacement rate of the fault 1 are 3 km and 300 m/Ma,respectively,and those of the fault 2 are 3 km and 1000 m/Ma.Studies suggest that,the cooling unit of lava rock or pyroclastic rock is a basic genetic stratigraphic unit in volcanic sequence stratigraphy.Cooling units can construct a parasequence reflecting a volcanic eruption stage.A sequence was superimposed by some parasequences,responding to a volcanic active cycle.There are three types of volcanic sequences in Yingcheng Formation: type of explosion,type of effusion and type of mixed explosion-effusion.The surface of the volcanic sequence,an unconformity surface widely spread and traced in seismic profiles,is a base for analysis of volcanic sequence.The development of volcanic sequence was controlled by faulting,and the curves of fault displacement(rate)can reflect this control.The preservation of volcanic sequence was controlled by the type of volcanic structure and the regional subsidence,also different from that of the sedimentary.The type of volcanic structure of Xujiaweizi was a volcanic depression during the forming of Yingcheng Formation,and the breakdowns of volcanoes and structural subsidence were key factors in the volcanic sequences preservation.
基金funded by the Youth Program of Earthquake Scientific Research Fund of Anhui Province(20120704)Contract Subject of Earthquake Administration of Anhui Province(201210)
文摘The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.
文摘The Longhai-Zhangpu coastal region lies in the so-called Golden Triangle area of southern Fujian Province. Tectonically, it is located on the southern segment of the Changle-Zhao'an fault zone, being one of the regions of Tertiary and Quaternary basaltic eruptions in China's southeast coastal area. In this area there are the Liuhui (Longhai County )-Jiangjun' ao (Zhangpu County) and Gangwei ( Longhai County )-Huxi ( Zhangpu County ) faults, along which basaltic eruption has occurred. The faults have been significantly active since the Quaternary, and several small to moderate earthquakes have occurred on the faults. In this paper, the basic characteristics of the late Quaternary activities and the combination relation of the faults are discussed on the basis of an analysis of along-fault basaltic eruptions during the late Tertiary to late Pleistocene, as well as the differential variation of geomorphic surfaces and marine deposits on both sides of the faults. The results show that the Liuhui-Jiangjun'ao fault is a late Pleistocene active fault. During the late Tertiary to late Pleistocene, three stages of basaltic eruptions occurred along the fault, among which the first stage occurred in the Pleistocene to early Pleistocene, the second stage in the middle Pleistocene and the third stage in the late Pleistocene. The Gangewei-Huxi fault can also be considered a late Pleistocene active fault. The elevation rate of the downthrown side of the fault is estimated to be 1. 11mm/a.These two faults have dissected the area into the Gangwei graben, south Taiwushan horst and the graben in the sea area to the east of Liuhul-Jiangjun'ao.
基金Projects 40772198 and 50678182 supported by the National Natural Science Foundation of China09-3-094 by the Research Fund for Teaching Reform in Institutes of Higher Learning,Chongqing, China
文摘In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary response relationship of the foreland basin to structural evolution: 1) a late Triassic Noric period;2) an early-Middle Jurassic period;3) a late Jurassic to early Cretaceous period;4) a late Cretaceous to Paleogene-Neogene period and 5) the Quaternary period. As well,we analyzed the sedimentary environment and lithologic features of every basin-forming period. The results show that there are several favorable source-reservoir-cap assemblages in our study area,making it a major region for future oil and gas exploration in China’s northern Sichuan basin.
文摘This paper elucidates the relationship between landslides, geologic structures, and hydrothermal alteration zones based primarily on X-ray powder diffraction and uniaxial compressive strength tests on weakly weathered and hydrothermally altered rocks from the Ohekisawa-Shikerebembetsugawa landslide area in Teshikaga Town, Hokkaido, Japan. The OHS (Ohekisawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Shikerepe Formation within a homocline, and also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing mordenite zone. The SHS (Shikerebembetsugawa slide) occurred on a dip slope of sedimentary rocks from the Upper Miocene Hanakushibe Formation within wavy folds and was also controlled by a cap rock of Teshikaga Volcano Somma Lava. The SHS occurred also on weathered and hydrothermally altered rocks within the boundary area between the hydrothermal smectite zone and smectite-bearing laumontite zone. The mechanical properties of smectite, smectite-bearing mordenite, and smectite-bearing laumontite zone weakly weathered rocks indicate that they are very weak, soft rocks. These landslides are regarded as HAZLs (hydrothermal alteration zone landslides). The hydrothermal alteration yielding smectite is thus closely related to these two ancient landslides, suggesting that the potential for HAZLs within a hydrothermal area can be assessed based on the swelling clay mineral-beating hydrothermal alteration types, dip slope, and cap rock.
基金sponsored by the State-level Public Welfare Scientific Research Courtyard Basic Scientific Research Program,Institute of Crustal Dynamics,CEA(ZDJ2010-19)the Joint Earthquake Science Foundation,China (606037)
文摘Located at the west of the Linfen basin, the Luoyunshan piedmont fault zone controls the western boundary of the basin. According to the measurements of the terraces in eight gullies along the Luoyunshan fault zone, five levels of terraces, namely T1~T5 have developed in these gullies. The heights of terraces T1, T2, T3, T4 and T5 are about 3m, 8~10m, about 20m, about 30m and 40~50m, respectively. The dating data of the terraces and investigation of the faulted landforms show that the Luoyunshan fault zone has experienced much activity since the Late Quaternary. The uplift rate of the terraces was 0.41mm/a since the Middle-Late Pleistocene, and 0.75mm/a since the Holocene. The increasing trend of uplift rate of the terraces along the Luoyunshan fault zone from the Middle-Late Pleistocene to Holocene indicates the tendency of gradual tectonic uplift of the fault zone since the late Quaternary. This is in good agreement with the increasing trend of subsidence rate of the Linfen basin from the Late Pleistocene to Holocene.
基金sponsored by the Special Earthquake Research Program(20070851)National Key Basic Research Development Planning grogram(2004CB418401)+1 种基金Basic Science Research Professional of Institute of Crustal Dynamics (2008)National Science and Technology Support Program(2006BAC13B01 -0202),China
文摘The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.