Zircon U-Pb age,whole rock geochemical and zircon Hf isotopic data are presented for Late Paleozoic granodiorites from the Taerqi region,central Daxing'anling to constrain its petrogenesis and tectonic implication...Zircon U-Pb age,whole rock geochemical and zircon Hf isotopic data are presented for Late Paleozoic granodiorites from the Taerqi region,central Daxing'anling to constrain its petrogenesis and tectonic implication.LA-ICP-MS zircon U-Pb age data indicates that the Late Paleozoic granodiorites were emplaced with age of333.4 ± 2.2 Ma(Early Carboniferous).Geochemically,the granodiorite samples have Si O2= 60.54%-71.40%,Na2 O = 4.04%--4.66%,K2 O = 1.65%--4.27% and Mg O = 0.96%--3.53%,belonging to medium-K to high-K calc-alkaline I-type granites.They are slightly enriched in large ion lithophile elements(e.g.Rb,Th,U and K) and light rare earth elements,and depleted in high field strength elements(e.g.Nb,Ta and Ti),with εHf(t) values of 8.0--11.8 and Hf two-stage model ages of 586-829 Ma.All these geochemical features suggest that the primary magma was derived from partial melting of Neoproterozoic to Phanerozoic newly accreted lower crust.According to the geochemical data and regional geological investigations,the Early Carboniferous granodiorites formed in an island arc setting linked to the subduction of the Paleo-Asian Oceanic Plate beneath the Xing'an Terrane.This also implies that the Xing'an and Songliao terranes have not amalgamated before the Early Carboniferous.展开更多
Zircon LA-ICP-MS U-Pb dating of the Jingju syenogranites in the southwestern part of Zhejiang Province shows that these rocks were crystallized in the Late Triassic at 215±2 Ma, rather than in the Cretaceous as p...Zircon LA-ICP-MS U-Pb dating of the Jingju syenogranites in the southwestern part of Zhejiang Province shows that these rocks were crystallized in the Late Triassic at 215±2 Ma, rather than in the Cretaceous as previously proposed. The Jingju sy- enogranites are characterized by relatively high K2O and FeO*, and low MgO. They have high concentrations of large ion lithophile elements (LIL) and LREE, such as K, Th, La, and Ce, but are depleted in high field strength elements (HFSE) such as Nb, Ta, and Ti. Their 104Ga/A1 ratios and (Zr+Nb+Ce+Y) contents are also high. These characteristics are similar to those of A-type granites. The syenogranites have high Isr (0.7179-0.7203), low eNa(t) (from --14.2 to --13.2), and relatively old T2DM ages, similar to those of the ancient metamorphic basement in the Cathaysia Block. It is suggested that the Jingju syenogranites were formed by partial melting of the Cathaysia basement rocks during tectonic extension. This identification of Indosinian A-type granite in Jingju has significant implications for understanding the early Mesozoic tectonic evolution of South China.展开更多
The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar...The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar biotite ages of the granitic mylonites, to constrain the structural characteristics, forming age, and tectonic attribute of the Erguna ductile shear zone. The zone strikes NE and records a top-to-the-NW sense of shear. A mylonitic foliation and stretching lineation are well developed in the mylonites, which are classified as S-L tectonites. Logarithmic flinn parameters(1.18–2.35) indicate elongate strain which approximates to plane strain. Kinematic vorticity numbers are 0.42–0.92 and 0.48–0.94, based on the polar Mohr diagram and the oblique foliation in quartz ribbons, respectively, suggesting that the ductile shear zone formed under general shear, or a combination of simple and pure shear. According to finite strain and kinematic vorticity analyses, the Erguna Fault is a lengthening-thinning ductile shear zone that formed by extension. The deformation behavior of minerals in the mylonites indicates that the fault was the site of three stages of deformation: an initial stage of middle- to deep-level, high-temperature shear, a post-stress recovery phase of high-temperature static recrystallization, and a final phase of low-temperature uplift and cooling. The 40Ar/39 Ar plateau ages of biotite from the granitic mylonites are 106.16 ± 0.79 and 111.55 ± 0.67 Ma, which constrain the timing of low-temperature uplift and cooling but are younger than the ages of metamorphic core complexes(MCCs) in the Transbaikalia-northeast Mongolia region. Using measured geological sections, microtectonics, estimates of finite strain and kinematic vorticity, and regional correlations and geochronology, we conclude that the Erguna Fault is an Early Cretaceous, NNE-trending, large-scale, sub-horizontal, and extensional ductile shear zone. It shares a similar tectonic background with the MCCs, volcanic fault basins, and large and super-large volcanic-hydrothermal deposits in Transbaikalia-northeast Mongolia and the western Great Khingan Mountains, all of which are the result of overthickened crust that gravitationally collapsed and extended in the Early Cretaceous after plate collision along the present-day Sino-Russia-Mongolia border tract.展开更多
The Longmenshan thrust belt(LMTB) is one of the best natural laboratories for thin-skinned tectonics and has developed a series of NE-SW trending fold-and-thrust structures represented by a series of nappes and klippe...The Longmenshan thrust belt(LMTB) is one of the best natural laboratories for thin-skinned tectonics and has developed a series of NE-SW trending fold-and-thrust structures represented by a series of nappes and klippes, exemplified by the Tangbazi and Bailuding klippe. However, the timing and emplacement mechanism of these klippes are still in dispute. Three possible mechanisms have been proposed:(1) a Mesozoic-Cenozoic southeastward thrusting,(2) a Cenozoic gravity gliding, and(3) glacial deposition. Almost all of these klippes are tectonic and overlaid on folded Late Triassic sandstone except the Tangbazi klippe, which is located in the center of the LMTB and has a narrow tail extending southeastward and covering Jurassic-Quaternary rocks. This geometric relationship is considered the most important stratigraphic evidence to support the post-Cenozoic emplacement of the Longmenshan klippe. Our structural and petrological observations show that the rocks at the front of the Tangbazi and Bailuding structures are brecciated limestone, which is assumed to have been generated by a gravitational collapse and is not characteristic of the massive Permian strata. Artemisia pollen, which has been exclusively recognized in post-Late Eocene strata in Central Asia, was found in the matrix of this brecciated limestone. Therefore, our discovery indicates that the brecciated limestone was deposited after the Late Eocene rather than during the Permian as annotated on the geological map. In contrast, unbrecciated, massive Permian limestone overlaid on the folded Late Triassic rocks. Hence, the anomalous relationship of Permian strata overlaying Late Triassic rocks cannot be evidence of Cenozoic emplacement. According to currently recognized bulk strata relationships, we can only be sure that the klippe was emplaced in the post Late Triassic. The petrological characteristics of the brecciated limestone show that it was crumbled before the re-sedimentation of the breccia, implying that the LMTB might have experienced a rapid uplift during the Late Eocene.展开更多
基金supported by the China Geological Survey (Grants 201301009018)
文摘Zircon U-Pb age,whole rock geochemical and zircon Hf isotopic data are presented for Late Paleozoic granodiorites from the Taerqi region,central Daxing'anling to constrain its petrogenesis and tectonic implication.LA-ICP-MS zircon U-Pb age data indicates that the Late Paleozoic granodiorites were emplaced with age of333.4 ± 2.2 Ma(Early Carboniferous).Geochemically,the granodiorite samples have Si O2= 60.54%-71.40%,Na2 O = 4.04%--4.66%,K2 O = 1.65%--4.27% and Mg O = 0.96%--3.53%,belonging to medium-K to high-K calc-alkaline I-type granites.They are slightly enriched in large ion lithophile elements(e.g.Rb,Th,U and K) and light rare earth elements,and depleted in high field strength elements(e.g.Nb,Ta and Ti),with εHf(t) values of 8.0--11.8 and Hf two-stage model ages of 586-829 Ma.All these geochemical features suggest that the primary magma was derived from partial melting of Neoproterozoic to Phanerozoic newly accreted lower crust.According to the geochemical data and regional geological investigations,the Early Carboniferous granodiorites formed in an island arc setting linked to the subduction of the Paleo-Asian Oceanic Plate beneath the Xing'an Terrane.This also implies that the Xing'an and Songliao terranes have not amalgamated before the Early Carboniferous.
基金supported by Ministry of Science and Technology of China (Grant No. 2007DFA21230)Natural Science Foundation of Hubei Province (Grant No. 2009CDA004)+2 种基金National Natural Science Foundation of China (Grant Nos. 40821061, 40334037)Ministry Education of China, State Administration of Foreign Expert Affairs of China (Grant No. B07039)Survey and Assessment of Geology and Mineral Resources (Grant No. B[2010]AMR01-17-05)
文摘Zircon LA-ICP-MS U-Pb dating of the Jingju syenogranites in the southwestern part of Zhejiang Province shows that these rocks were crystallized in the Late Triassic at 215±2 Ma, rather than in the Cretaceous as previously proposed. The Jingju sy- enogranites are characterized by relatively high K2O and FeO*, and low MgO. They have high concentrations of large ion lithophile elements (LIL) and LREE, such as K, Th, La, and Ce, but are depleted in high field strength elements (HFSE) such as Nb, Ta, and Ti. Their 104Ga/A1 ratios and (Zr+Nb+Ce+Y) contents are also high. These characteristics are similar to those of A-type granites. The syenogranites have high Isr (0.7179-0.7203), low eNa(t) (from --14.2 to --13.2), and relatively old T2DM ages, similar to those of the ancient metamorphic basement in the Cathaysia Block. It is suggested that the Jingju syenogranites were formed by partial melting of the Cathaysia basement rocks during tectonic extension. This identification of Indosinian A-type granite in Jingju has significant implications for understanding the early Mesozoic tectonic evolution of South China.
基金supported by National Basic Research Program of China(Grant No.2009CB219305)
文摘The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar biotite ages of the granitic mylonites, to constrain the structural characteristics, forming age, and tectonic attribute of the Erguna ductile shear zone. The zone strikes NE and records a top-to-the-NW sense of shear. A mylonitic foliation and stretching lineation are well developed in the mylonites, which are classified as S-L tectonites. Logarithmic flinn parameters(1.18–2.35) indicate elongate strain which approximates to plane strain. Kinematic vorticity numbers are 0.42–0.92 and 0.48–0.94, based on the polar Mohr diagram and the oblique foliation in quartz ribbons, respectively, suggesting that the ductile shear zone formed under general shear, or a combination of simple and pure shear. According to finite strain and kinematic vorticity analyses, the Erguna Fault is a lengthening-thinning ductile shear zone that formed by extension. The deformation behavior of minerals in the mylonites indicates that the fault was the site of three stages of deformation: an initial stage of middle- to deep-level, high-temperature shear, a post-stress recovery phase of high-temperature static recrystallization, and a final phase of low-temperature uplift and cooling. The 40Ar/39 Ar plateau ages of biotite from the granitic mylonites are 106.16 ± 0.79 and 111.55 ± 0.67 Ma, which constrain the timing of low-temperature uplift and cooling but are younger than the ages of metamorphic core complexes(MCCs) in the Transbaikalia-northeast Mongolia region. Using measured geological sections, microtectonics, estimates of finite strain and kinematic vorticity, and regional correlations and geochronology, we conclude that the Erguna Fault is an Early Cretaceous, NNE-trending, large-scale, sub-horizontal, and extensional ductile shear zone. It shares a similar tectonic background with the MCCs, volcanic fault basins, and large and super-large volcanic-hydrothermal deposits in Transbaikalia-northeast Mongolia and the western Great Khingan Mountains, all of which are the result of overthickened crust that gravitationally collapsed and extended in the Early Cretaceous after plate collision along the present-day Sino-Russia-Mongolia border tract.
基金the National Natural Science Foundation of China (Grant Nos. 41372028, 41225009 & 41472193)the Project of Major State Special Research on Petroleum (Grant No. 2011ZX05008-001)
文摘The Longmenshan thrust belt(LMTB) is one of the best natural laboratories for thin-skinned tectonics and has developed a series of NE-SW trending fold-and-thrust structures represented by a series of nappes and klippes, exemplified by the Tangbazi and Bailuding klippe. However, the timing and emplacement mechanism of these klippes are still in dispute. Three possible mechanisms have been proposed:(1) a Mesozoic-Cenozoic southeastward thrusting,(2) a Cenozoic gravity gliding, and(3) glacial deposition. Almost all of these klippes are tectonic and overlaid on folded Late Triassic sandstone except the Tangbazi klippe, which is located in the center of the LMTB and has a narrow tail extending southeastward and covering Jurassic-Quaternary rocks. This geometric relationship is considered the most important stratigraphic evidence to support the post-Cenozoic emplacement of the Longmenshan klippe. Our structural and petrological observations show that the rocks at the front of the Tangbazi and Bailuding structures are brecciated limestone, which is assumed to have been generated by a gravitational collapse and is not characteristic of the massive Permian strata. Artemisia pollen, which has been exclusively recognized in post-Late Eocene strata in Central Asia, was found in the matrix of this brecciated limestone. Therefore, our discovery indicates that the brecciated limestone was deposited after the Late Eocene rather than during the Permian as annotated on the geological map. In contrast, unbrecciated, massive Permian limestone overlaid on the folded Late Triassic rocks. Hence, the anomalous relationship of Permian strata overlaying Late Triassic rocks cannot be evidence of Cenozoic emplacement. According to currently recognized bulk strata relationships, we can only be sure that the klippe was emplaced in the post Late Triassic. The petrological characteristics of the brecciated limestone show that it was crumbled before the re-sedimentation of the breccia, implying that the LMTB might have experienced a rapid uplift during the Late Eocene.