期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于覆盖的构造性学习算法SLA及在股票预测中的应用 被引量:18
1
作者 张燕平 张铃 +3 位作者 吴涛 徐锋 张 王伦文 《计算机研究与发展》 EI CSCD 北大核心 2004年第6期979-984,共6页
覆盖算法是神经网络学习算法中的一个十分有效的方法 ,它克服了基于搜索机制的学习方法和规划学习方法计算复杂性高 ,难以用于处理海量数据的不足 ,为神经网络提供一个构造性的学习方法 但该方法是建立在所有训练样本都是精确的假设上... 覆盖算法是神经网络学习算法中的一个十分有效的方法 ,它克服了基于搜索机制的学习方法和规划学习方法计算复杂性高 ,难以用于处理海量数据的不足 ,为神经网络提供一个构造性的学习方法 但该方法是建立在所有训练样本都是精确的假设上的 ,未考虑到所讨论的数据具有不精确的情况 ,若直接将该方法应用于数据不精确情况 ,所得到效果不理想 主要讨论数据具有不精确情况下的时间序列的预测问题 为此将原有的覆盖算法进行改进 ,引入“覆盖强度”和“拒识样本”的概念 ,并结合这些新概念给出相应的覆盖学习算法 (简称SLA) ,最后将SLA算法 ,应用于金融股市的预测 ,具体应用到以上 (海 )证 (券 )综合指数构成的时间序列的预测 ,取得了较好的结果 。 展开更多
关键词 覆盖算法 构造性学习算法(sla) 股市预测 时间序列
下载PDF
构造性覆盖方法的增量学习算法 被引量:3
2
作者 张燕平 杜玲 赵姝 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期699-704,共6页
构造性机器学习方法——覆盖算法学习速度快、复杂度低、可解释性强,能有效地解决有导师学习问题,并取得了很好的效果,但构造神经元的权值即取新覆盖中心时通常人为地给定一个准则,并未遵循样本的分布特征求得最优解.由此采用佳点集理... 构造性机器学习方法——覆盖算法学习速度快、复杂度低、可解释性强,能有效地解决有导师学习问题,并取得了很好的效果,但构造神经元的权值即取新覆盖中心时通常人为地给定一个准则,并未遵循样本的分布特征求得最优解.由此采用佳点集理论求取覆盖中心,以改进覆盖算法.针对大规模或动态数据集的分类问题,将构造性覆盖方法与增量学习的思想相结合,提出了构造性覆盖方法的增量学习算法.该算法利用改进的覆盖算法作为基础学习器,通过连续地对新增样本进行测试而反复不断地提炼已有模型,体现了对样本的"渐近式"学习.对标准数据集的实验结果表明,这种增量学习算法是有效的. 展开更多
关键词 构造性机器学习方法 覆盖算法 佳点集 增量学习
下载PDF
基于Tri-training算法的构造性学习方法 被引量:3
3
作者 吴涛 李萍 王允强 《计算机工程》 CAS CSCD 2012年第6期13-15,共3页
构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据... 构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。 展开更多
关键词 半监督学习 构造性机器学习 Tri-training算法 覆盖 分类网络
下载PDF
基于领域搜索的构造性学习算法
4
作者 李萍 张德然 +1 位作者 程向阳 李林国 《微计算机信息》 2012年第10期486-487,490,共3页
构造性机器学习在构造覆盖领域时覆盖中心点的选择对覆盖领域的个数有直1接影响。针对这一问题,应用领域搜索算法,提出了一种新的构造性学习方法。把某个中心点和半径作为初始解,在邻近解中迭代,使覆盖网络逐步优化,直至不能再优为止。... 构造性机器学习在构造覆盖领域时覆盖中心点的选择对覆盖领域的个数有直1接影响。针对这一问题,应用领域搜索算法,提出了一种新的构造性学习方法。把某个中心点和半径作为初始解,在邻近解中迭代,使覆盖网络逐步优化,直至不能再优为止。实验结果表明基于领域搜索的构造性学习算法可以使覆盖个数得到明显减少,不但可行而且行之有效。 展开更多
关键词 领域搜索 构造性学习 覆盖算法
下载PDF
基于构造性学习算法的开放式基金评价
5
作者 李萍 《商情》 2010年第36期93-93,142,共2页
开放式基金评估是对基金运行状况的认识和判断,其研究结果直接或间接的影响宏观调控政策的合理制定,不仅是经济学的重要研究领域,而且得到公众的普遍关注。但是,传统评估方法主要建立在专家经验或简单的统计学模型,难以反映高度非... 开放式基金评估是对基金运行状况的认识和判断,其研究结果直接或间接的影响宏观调控政策的合理制定,不仅是经济学的重要研究领域,而且得到公众的普遍关注。但是,传统评估方法主要建立在专家经验或简单的统计学模型,难以反映高度非线性的经济系统的本质无法满足基金评估的客观要求。本文利用覆盖算法对股票型基金进行评价并得到较好的结果。这种方法为我们评价开放式基金带来了方便。 展开更多
关键词 开放式基金评估 构造性学习算法(sla) 覆盖算法
下载PDF
基于Rough集和构造性学习神经网络的经济预警模型 被引量:3
6
作者 朱勇 吴涛 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第7期836-839,843,共5页
在深入分析人工神经网络(ANN)与粗集(Rough set)理论方法的基础上,将Rough集、构造性神经网络与宏观经济预警研究相结合,尝试建立起基于Rough集-覆盖算法的构造性神经网络宏观经济预警方法体系;结合安徽省经济数据,对该模型预警实证分... 在深入分析人工神经网络(ANN)与粗集(Rough set)理论方法的基础上,将Rough集、构造性神经网络与宏观经济预警研究相结合,尝试建立起基于Rough集-覆盖算法的构造性神经网络宏观经济预警方法体系;结合安徽省经济数据,对该模型预警实证分析。理论和实践证明,基于Rough集-覆盖算法的构造性神经网络预警模型是有效的、可行的,且具有较高的精度,从而为动态经济预警提供一条新的途经。 展开更多
关键词 经济预警 构造性学习 覆盖算法 粗糙集
下载PDF
协同半监督的构造性学习方法 被引量:1
7
作者 李萍 吴涛 《计算机工程与应用》 CSCD 北大核心 2015年第3期129-132,207,共5页
利用构造性学习(CML)算法训练分类器需要大量已标记样本,然而获取大量已标记的样本较为困难。为此,提出了一种协同半监督的构造性学习算法。将已标记样本等分为三个训练集,分别使用构造性学习算法训练三个单分类器,以共同投票的方式对... 利用构造性学习(CML)算法训练分类器需要大量已标记样本,然而获取大量已标记的样本较为困难。为此,提出了一种协同半监督的构造性学习算法。将已标记样本等分为三个训练集,分别使用构造性学习算法训练三个单分类器,以共同投票的方式对未标记样本进行标记,从而依次扩充三个单分类器训练集直到不能再扩充为止。将三个训练集合并训练出最终的分类器。选取UCI数据集进行实验,结果表明,与CML算法、Tri-CML算法、NB算法及Tri-NB相比,该方法的分类更为有效。 展开更多
关键词 半监督学习 构造性机器学习 co-training算法 tri-training算法 覆盖算法
下载PDF
一种集成构造性分类学习方法 被引量:1
8
作者 李萍 赵莎莎 《湖南城市学院学报(自然科学版)》 CAS 2015年第4期122-123,共2页
构造性学习算法训练分类器对有些样本会有"拒认状态",构造性学习算法中对这一状况的处理使用就近原则,然而,这种方法通常不能给出"拒认状态"样本的正确类别。提出了一种集成构造性分类方法,在测试阶段,通过多个分... 构造性学习算法训练分类器对有些样本会有"拒认状态",构造性学习算法中对这一状况的处理使用就近原则,然而,这种方法通常不能给出"拒认状态"样本的正确类别。提出了一种集成构造性分类方法,在测试阶段,通过多个分类器的最终打分,对"拒认状态"样本进行分类标记。同时,选取UCI数据集进行实验,结果表明,与CML算法相比,该方法的分类更为有效。 展开更多
关键词 构造性机器学习 集成学习 覆盖算法
下载PDF
基于构造性学习方法的车牌定位 被引量:2
9
作者 段震 姚芳兵 张铃 《微机发展》 2004年第8期41-43,46,共4页
汽车牌照的定位是智能交通系统中的重要组成部分之一,其定位效果直接关系到后期的识别工作,应用前景广阔。为了有效实现车牌的准确定位,文中首先在灰度图像中基于提取部分怀疑区域,然后使用基于构造性学习的交叉覆盖算法,对区域样本进... 汽车牌照的定位是智能交通系统中的重要组成部分之一,其定位效果直接关系到后期的识别工作,应用前景广阔。为了有效实现车牌的准确定位,文中首先在灰度图像中基于提取部分怀疑区域,然后使用基于构造性学习的交叉覆盖算法,对区域样本进行学习后构造出对应的神经网络,然后使用该网络对新进样本进行定位,从怀疑区域中确定出牌照的位置。对不同背景和光照条件下的大量实验结果表明定位准确率较高,从而该方法可行有效,有较强的实用价值。 展开更多
关键词 构造性机器学习 交叉覆盖算法 汽车牌照 定位
下载PDF
人脑半监督的构造性学习方法
10
作者 李萍 吴涛 《西安文理学院学报(自然科学版)》 2014年第3期70-73,92,共5页
利用构造性学习(CML)算法训练分类器需要大量已标记样本,然而获取大量已标记的样本较为困难.为此,提出了一种人脑半监督的构造性学习算法(HPSS-CML).根据已标记样本,通过覆盖算法构造分类网络,对未标记样本进行有选择的标记,并将其加入... 利用构造性学习(CML)算法训练分类器需要大量已标记样本,然而获取大量已标记的样本较为困难.为此,提出了一种人脑半监督的构造性学习算法(HPSS-CML).根据已标记样本,通过覆盖算法构造分类网络,对未标记样本进行有选择的标记,并将其加入训练集,调整分类网络参数.重复进行上述过程,直到没有新标记的样本为止,得到最终的分类器.测试阶段再次利用未标记样本对"拒认状态"的测试样本进行标记.最后选取UCI数据集进行实验,结果表明,与CML算法及Tri-CML算法相比,该方法的分类更为有效. 展开更多
关键词 构造性机器学习( CML) 人脑半监督学习( HPSS) Tri-training算法 覆盖算法
下载PDF
人脑分类机理的构造性学习方法
11
作者 李萍 赵莎莎 《西安文理学院学报(自然科学版)》 2016年第1期45-47,共3页
构造性学习(CML)算法训练分类器对有些样本会有"拒认状态",构造性学习算法中对这一状况的处理使用就近原则,然而,这种方法无法体现数据之间的联系.为了能更好地体现数据间的联系,提出了人脑分类机理的构造性学习方法(HB-CML)... 构造性学习(CML)算法训练分类器对有些样本会有"拒认状态",构造性学习算法中对这一状况的处理使用就近原则,然而,这种方法无法体现数据之间的联系.为了能更好地体现数据间的联系,提出了人脑分类机理的构造性学习方法(HB-CML).在测试阶段,把测试样本、训练样本都考虑进来,利用人脑对数据的自动分类机理,对"拒认状态"样本进行分类标记.同时,选取UCI数据集进行实验.结果表明:与CML算法相比,该方法的分类更为有效. 展开更多
关键词 构造性机器学习 人脑分类 覆盖算法
下载PDF
机器学习中的核覆盖算法 被引量:33
12
作者 吴涛 张铃 张燕平 《计算机学报》 EI CSCD 北大核心 2005年第8期1295-1301,共7页
基于统计学习理论的支持向量机(SVM)方法在样本空间或特征空间构造最优分类超平面解决了分类器的构造问题,但其本质是二分类的,且核函数中的参数难以确定,计算复杂性高.构造性学习算法根据训练样本构造性地设计分类网络,运行效率高,便... 基于统计学习理论的支持向量机(SVM)方法在样本空间或特征空间构造最优分类超平面解决了分类器的构造问题,但其本质是二分类的,且核函数中的参数难以确定,计算复杂性高.构造性学习算法根据训练样本构造性地设计分类网络,运行效率高,便于处理多分类问题,但存在所得的分界面零乱、测试计算量大的缺点.该文将SVM中的核函数法与构造性学习的覆盖算法相融合,给出一种新的核覆盖算法.新算法克服了以上两种模型的缺点,具有运算速度快、精度高、鲁棒性强的优点.其次,文中给出风险误差上界与覆盖个数的关系.最后给出实验模拟,模拟结果证明了新方法的优越性. 展开更多
关键词 核覆盖算法 融合 机器学习 支持向量机 构造性算法
下载PDF
算法学习在高中数学中的意义
13
作者 吴晓云 《甘肃科技》 2012年第15期90-91,共2页
随着现代信息技术的迅猛发展,算法已融入生活的众多方面,扮演着重要的角色。在高中数学教科书中也将算法作为一个独立的章节在学习,算法的思想和初步知识也正在成为普通公民的常识。主要论述了什么是算法以及学生学习算法的意义。
关键词 算法 学习算法的意义 构造性数学 算法的教学
下载PDF
基于超立方体覆盖的构造性网络学习算法 被引量:2
14
作者 谌卫军 林福宗 +1 位作者 李建民 张钹 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期97-100,共4页
该文提出了一种基于超立方体覆盖的构造性神经网络学习算法,以解决二值型输入变量的K分类问题。该算法分两步来动态地构造一个三层前馈网络。首先,对于每一类的所有训练样本,用尽可能少的超立方体来覆盖它们,并为每一个超立方体构造一... 该文提出了一种基于超立方体覆盖的构造性神经网络学习算法,以解决二值型输入变量的K分类问题。该算法分两步来动态地构造一个三层前馈网络。首先,对于每一类的所有训练样本,用尽可能少的超立方体来覆盖它们,并为每一个超立方体构造一个隐层单元;其次,用"或"操作把这些隐单元连接到相应的输出单元上。文章给出了相应的理论分析和一个具体的实现。实验结果表明,该算法优于常用的一些归纳学习算法。 展开更多
关键词 构造性网络学习算法 人工神经网络 构造 超立方体覆盖 BP算法 K分类 二值型输入变量
原文传递
基于概率的覆盖算法的模型及仿真研究
15
作者 周瑛 谢阳群 张铃 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第17期4609-4612,4617,共5页
提出的基于概率的覆盖算法——PBCA是一种新的分类算法,它利用学习所得到的样本的概率分布信息,通过投票的方式来决定覆盖边界中样本的类别。从网络结构上看,它是一种混合型的神经网络,由下面三层的前馈网络和上层的反馈网络组成。通过... 提出的基于概率的覆盖算法——PBCA是一种新的分类算法,它利用学习所得到的样本的概率分布信息,通过投票的方式来决定覆盖边界中样本的类别。从网络结构上看,它是一种混合型的神经网络,由下面三层的前馈网络和上层的反馈网络组成。通过在覆盖中加入一定数量的异类样本和使用概率的方法来扩大覆盖半径,减少拒识的样本数,提高识别率。计算机仿真实验表明,这种方法有效地提高了学习的精度。 展开更多
关键词 构造性学习算法 神经网络 覆盖算法 概率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部