In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer u...In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region.展开更多
In seismic hazard analysis of nuclear power plant of China there is a need to identify both seismogenic structures and seismotectonic zones. In past practice,the identification of the seismogenic structures was often ...In seismic hazard analysis of nuclear power plant of China there is a need to identify both seismogenic structures and seismotectonic zones. In past practice,the identification of the seismogenic structures was often based on the surface active faults and characterization of linear seismic source. In a situation which shows quite strong non-random seismic activity and lacks surface active faults,it is difficult to evaluate the seismic hazard reasonably. Taking seismogenic structures in the Dayao-Yao'an area as a case study in this paper,we discuss the need and the possibility to apply the planar seismogenic structure to the seismotectonic method. We suggest that the planar seismogenic structure should be considered when applying the seismotectonic method to the seismic risk assessment of nuclear engineering in future.展开更多
基金Supported by the State Key Development Program for Basic Research of China (2010CB22686) the National Natural Science Foundation of China (51174112, 51174272)
文摘In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region.
基金jointly supported by the Special Fund for Major Large-scale Advanced PWR Nuclear Power Plant(2011ZX06002)the Special Fund for Basic Research and Operating Expenses of Institute of Geophysics,China Earthquake Administration(DQJB11C08)
文摘In seismic hazard analysis of nuclear power plant of China there is a need to identify both seismogenic structures and seismotectonic zones. In past practice,the identification of the seismogenic structures was often based on the surface active faults and characterization of linear seismic source. In a situation which shows quite strong non-random seismic activity and lacks surface active faults,it is difficult to evaluate the seismic hazard reasonably. Taking seismogenic structures in the Dayao-Yao'an area as a case study in this paper,we discuss the need and the possibility to apply the planar seismogenic structure to the seismotectonic method. We suggest that the planar seismogenic structure should be considered when applying the seismotectonic method to the seismic risk assessment of nuclear engineering in future.