Based on first-hand material from the geological exploration of petroleum,we made a detailed study of the tectonic development in the Early Cretaceous and the distribution of basement rifts in the Songliao Basin.The s...Based on first-hand material from the geological exploration of petroleum,we made a detailed study of the tectonic development in the Early Cretaceous and the distribution of basement rifts in the Songliao Basin.The sedimentary characteristics of this epoch and the tectono-paleogeography of the basin were expounded.The results show that in its early stages,the Songliao Basin was characterized by a detached faulted basin in which mainly lake facies developed among mountains.It became gradually one lake during the late stages of the Early Cretaceous.During this period,the fault activity in the Songliao Basin changed from a turbulent to a quiet development,the water area from small separated lakes to one large lake,in which the sedimentary facies were divided into asymmetric eastern and western parts.In the basin a volcanic clastic rock-alluvial fan system developed and a fan delta-lake-small delta-river system was mainly deposired.Our research also shows that the basement rifts not only controlled the distribution of fault depressions and the tectonic development in the Early Cretaceous,but had also an effect on the orientation of sedimentation,source area and river system,which determine the tectonopaleogeography of the Early Cretaceous.展开更多
Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow...Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.展开更多
The Changling fault depression passed through three stages of evolution: a period of faulting, a period of subsidence, and an inversion period. The fault lifted the whole area and the formation was eroded during the l...The Changling fault depression passed through three stages of evolution: a period of faulting, a period of subsidence, and an inversion period. The fault lifted the whole area and the formation was eroded during the late Yingcheng formation, the late Nenjiang formation, and the late Mingshui formation. The denudation quantity of eight wells located in the study area is estimated by the interval transit time method and by the formation trend extension method using seismic and drilling data. Inversion back stripping technology with de-compaction correction was used to restore the original sedimentary thickness step by step and to recover the burial history at a single well. Two profiles were selected for the recovery and study of the tectonic evolution. The study confirmed that the primary major gas bearing structure formed due to thermal shrinkage lifting during the late Yingcheng formation. Successive development in a pattern during the late Mingshui formation led to the formation of the primary gas pool. Vertical differential uplift during the late Nenjiang formation formed the Fulongquan structure during the late Paleogene. At this same time a secondary gas pool formed. A large scale reverse developed late in the Mingshui formation that provided the impetus for formation of a secondary gas pool. It is thought that the migration and accumulation of oil and gas was controlled by lithologic character, fracture, and structure. The local uplift in the vicinity of the hydrocarbon recession is most conducive to the collection of hydrocarbon gas.展开更多
文摘Based on first-hand material from the geological exploration of petroleum,we made a detailed study of the tectonic development in the Early Cretaceous and the distribution of basement rifts in the Songliao Basin.The sedimentary characteristics of this epoch and the tectono-paleogeography of the basin were expounded.The results show that in its early stages,the Songliao Basin was characterized by a detached faulted basin in which mainly lake facies developed among mountains.It became gradually one lake during the late stages of the Early Cretaceous.During this period,the fault activity in the Songliao Basin changed from a turbulent to a quiet development,the water area from small separated lakes to one large lake,in which the sedimentary facies were divided into asymmetric eastern and western parts.In the basin a volcanic clastic rock-alluvial fan system developed and a fan delta-lake-small delta-river system was mainly deposired.Our research also shows that the basement rifts not only controlled the distribution of fault depressions and the tectonic development in the Early Cretaceous,but had also an effect on the orientation of sedimentation,source area and river system,which determine the tectonopaleogeography of the Early Cretaceous.
文摘Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.
基金the Marine Prospective Project of China Petrochemical Corporation (No.G0800-06-ZS324) for the financial support
文摘The Changling fault depression passed through three stages of evolution: a period of faulting, a period of subsidence, and an inversion period. The fault lifted the whole area and the formation was eroded during the late Yingcheng formation, the late Nenjiang formation, and the late Mingshui formation. The denudation quantity of eight wells located in the study area is estimated by the interval transit time method and by the formation trend extension method using seismic and drilling data. Inversion back stripping technology with de-compaction correction was used to restore the original sedimentary thickness step by step and to recover the burial history at a single well. Two profiles were selected for the recovery and study of the tectonic evolution. The study confirmed that the primary major gas bearing structure formed due to thermal shrinkage lifting during the late Yingcheng formation. Successive development in a pattern during the late Mingshui formation led to the formation of the primary gas pool. Vertical differential uplift during the late Nenjiang formation formed the Fulongquan structure during the late Paleogene. At this same time a secondary gas pool formed. A large scale reverse developed late in the Mingshui formation that provided the impetus for formation of a secondary gas pool. It is thought that the migration and accumulation of oil and gas was controlled by lithologic character, fracture, and structure. The local uplift in the vicinity of the hydrocarbon recession is most conducive to the collection of hydrocarbon gas.