Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
A new mobile multicast scheme called mobility prediction based mobile multicast(MPBMM) was proposed. In MPBMM, when a mobile node (MN) roams among subnets during a multicast session, MN predicts the next subnet, to wh...A new mobile multicast scheme called mobility prediction based mobile multicast(MPBMM) was proposed. In MPBMM, when a mobile node (MN) roams among subnets during a multicast session, MN predicts the next subnet, to which MN will attach, by the information of its position and mobility speed, consequently speeds up the handoff procedure. Simulation results show that the proposed scheme can minimize the loss of multicast packets, reduce the delay of subnet handoff, decrease the frequency of multicast tree reconfiguration, and optimize the delivery path of multicast packets. When MN moves among subnets at different speeds (from 5 to 25 ms), the maximum loss ratio of multicast packets is less than0.2%, the maximum inter-arrival time of multicast packets is 117 ms, so the proposed scheme can meet the QoS requirements of real-time services. In addition, MPBMM can support the mobility of multicast source.展开更多
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
基金Project (60573127) supported by the National Natural Science Foundation of ChinaProject (20040533036) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project (05JJ40131) supported by the Natural Science Foundation of Hunan Province, ChinaProject(03C326) supported by the Natural Science Foundation of Education Department of Hunan Province, China
文摘A new mobile multicast scheme called mobility prediction based mobile multicast(MPBMM) was proposed. In MPBMM, when a mobile node (MN) roams among subnets during a multicast session, MN predicts the next subnet, to which MN will attach, by the information of its position and mobility speed, consequently speeds up the handoff procedure. Simulation results show that the proposed scheme can minimize the loss of multicast packets, reduce the delay of subnet handoff, decrease the frequency of multicast tree reconfiguration, and optimize the delivery path of multicast packets. When MN moves among subnets at different speeds (from 5 to 25 ms), the maximum loss ratio of multicast packets is less than0.2%, the maximum inter-arrival time of multicast packets is 117 ms, so the proposed scheme can meet the QoS requirements of real-time services. In addition, MPBMM can support the mobility of multicast source.