In the Middle Jurassic,a large-scale tectonic-magmatic activities and hydrothermal mineralization occurred in the eastern Jilin province.The deposit types consist of the orogenic gold deposit,porphyry molybdenum depos...In the Middle Jurassic,a large-scale tectonic-magmatic activities and hydrothermal mineralization occurred in the eastern Jilin province.The deposit types consist of the orogenic gold deposit,porphyry molybdenum deposit and skarn gold deposit,etc.,which constitute regional hydrothermal metallogenic series.The magmatic bodies related to mineralization belong to calc-alkaline series,which are characterized by active continental margins.The above-mentioned different types of deposits formed in a uniform tectonic setting,which resulted from the combined processes between the subduction of Pacific plate under the Eurasia plate and the persistent post-collisional convergent forces between the North China plate and the Siberian plate.The mineralizations were happening in the deceleration period,after which Paleo-Pacific plate was strongly subducted under the Eurasia continental block,i.e.transition period from compression to extension.展开更多
The hydrothermal vent in Area A (37.78°S, 49.65°E) is the first active hydrothermal vent discovered on the Southwest Indian Ridge (SWlR). Heat source and adequate bulk permeability are two necessary fact...The hydrothermal vent in Area A (37.78°S, 49.65°E) is the first active hydrothermal vent discovered on the Southwest Indian Ridge (SWlR). Heat source and adequate bulk permeability are two necessary factors for the formation of a hydrothermal vent. Along the SWIR 49.3°E to 51.2°E, the gravity-derived crustal thickness is up to 9.0 km, much thicker than the average thick- ness of the global oceanic crust. This characteristic indicates that the magma supply in this area is robust, which is possibly af- fected by a hotspot. The large-scale residual mantle Bouguer anomalies (RMBA) reveal prominent negative-gravity anomalies between the first-order ridge segment (from Indomed to Gallieni, 46.0°E to 52.0°E) and the Marion-Del Cano-Crozet region. These anomalies indicate the channel of the hotspot-ridge interaction. The tomography data corrected with theoretical thermal model indicate that the low-velocity anomalies corresponding to this channel can reach the base of the lithosphere. Near the hydrothermal vent area, the topography and crustal thickness at the off-axis area are extremely asymmetrical. South of the SWIR, the high topography corresponds to the thinning crustal thickness. The residual isostatic topography anomalies indicate that Area A is a deviation from the local isostatic equilibrium, similar to the characteristics of the transform fault inside corner. The forward profiles of the magnetic data indicate that the thinning magnetic layer at the south side of Area A corresponds to the shallow, high-velocity area revealed by the OBS, which is the result of tectonic extension of a detachment fault. The active tectonic processes in Area A can provide sufficient crustal permeability to the hydrothermal circulation and may form massive sulfide deposits.展开更多
The tectono-magmatism in eastern China is a hotspot for the researches, and many hypotheses of that were discussed. There is a middle crust with solid, low velocity and high conductivity in eastern China, which is imp...The tectono-magmatism in eastern China is a hotspot for the researches, and many hypotheses of that were discussed. There is a middle crust with solid, low velocity and high conductivity in eastern China, which is impossible to form"convection magmatic layer". The subduction and compression of oceanic plate induced to the lateral pressure for the eastern China lithosphere in the condition of increasing pressure and decreasing temperature, it is also impossible to form an extensively melting magma layer. In South China, the granitic zone migrates from west to east, their evolution cannot be explained by plate subduction. The original magmatic reservoirs are controlled by main faults and spheres, which occurred the tectonic detachment and formed in the process of decreasing pressure and increasing temperature. The magma only originates in very small part of lithosphere. The tectono-magmatism and tectonic detachment of eastern China lithosphere during the Jurassic and the Cretaceous are concentrate mainly near the intersections between the regional faults and middle crust or the Moho discontinuity, and then magma intrudes or erupts along faults. The tectono-magmatism of Cenozoic originates near the intersections between the regional high-angle normal faults and the bottom of lithosphere. Obviously, the different penetration depth of faults induces a different kind of magmatism.展开更多
Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in ...Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in the elements and isotopic compositions of these granites at about 127 Ma. The early stage(158–128 Ma) granites show slightly or no negative Eu anomalies, large ion lithophile elements enriched and heavy REE depleted(such as Y and Yb), belonging to typical I-type granite. The late stage(126–112 Ma) granites are characterized by A-type and/or highly fractionated I-type granite, with higher contents of SiO2, K2 O, Y, Yb and Rb/Sr ratio and lower contents of Sr, δEu value and Sr/Y ratio than that of the early-stage granites.Moreover, the whole rock Nd and Hf isotopic compositions of the granites younger than 127 Ma show more depleted than those of the older one. The two stages of Late Mesozoic granites were derived from a source region of the ancient basement of the southern margin of the NCC incorporated the mantle material. The late stage(126–112 Ma) granites contain more fractions of mantle material with depleted isotopic composition than the early ones. The granites record evidence for a strong crust-mantle interaction. They formed in an intracontinental extensional setting which was related to lithospheric thinning and asthenospheric upwelling in this region, which was possibly caused by westward subduction of the Paleo-Pacific plate. 127 Ma is an critical period of the transformation of the tectonic regime.展开更多
The South China Block was formed through the collisional orogeny between the Cathaysia Block and the Yangtze Block in the Early Neoproterozoic.The northern,western and southern sides of the South China Block were affe...The South China Block was formed through the collisional orogeny between the Cathaysia Block and the Yangtze Block in the Early Neoproterozoic.The northern,western and southern sides of the South China Block were affected by disappearance of the Paleo-Tethyan Ocean during the Paleozoic.The southern and northern sides of the South China Block were respectively collided with the Indo-China Block and North China Block in the latest Paleozoic to form the basic framework of the Eastern China.The Eastern China has been affected by the westward subduction of the Pacific Plate since the Mesozoic.Therefore,the South China Block was influenced by the three major tectonic systems,leading to a superposed compound tectonics.The comparative study of the Mesozoic geology between the South China Block and its surrounding areas suggests that although the Mesozoic South China Block was adjacent to the subduction zone of the western Pacific,no juvenile arc-type crust has been found in the eastern margin.The main Mesozoic geology in South China is characterized by reworking of ancient continental margins to intracontinental tectonics,lacking oceanic arc basalts and continental arc andesites.Therefore,a key to understanding of the Mesozoic geology in South China is to determine the temporal-spatial distribution and tectonic evolution of Mesozoic magmatic rocks in this region.This paper presents a review on the tectonic evolution of the South China Block through summarizing the magmatic rock records from the compressional to extensional tectonic process with the transition at the three juncture zones and using the deformation and geophysic data from the deep part of the South China continental lithosphere.Our attempt is to promote the study of South China’s geology and to make it as a typical target for development of plate tectonic theory.展开更多
There exist three mainstream opinions regarding the timing of the initial collision between the Indian and Eurasian continents,namely,65±5,45±5,and 30±5 Ma.Five criteria are proposed for determining whi...There exist three mainstream opinions regarding the timing of the initial collision between the Indian and Eurasian continents,namely,65±5,45±5,and 30±5 Ma.Five criteria are proposed for determining which tectonic event was related to the initial collision between India and Asia:the rapid decrease in the rate of plate motion,the cessation of magmatic activity originating from the subduction of oceanic crust,the end of sedimentation of oceanic facies,the occurrence of intracontinental deformation,and the exchange of sediments sourced from two continents.These criteria are used to constrain the nature of these tectonic events.It is proposed that the 65±5 Ma tectonic event is consistent with some of the criteria,but the upshot of this model is that the magmatic activity originating from the Tethyan subduction since the Mesozoic restarted along the southern margin of the Asian continent in this time after a brief calm,implying that the subduction of the Neotethys slab was still taking place.The magmatic activity that occurred along the southern margin of the Asian continent had a 7-Myr break during 72-65 Ma,which in this study is interpreted as having resulted from tectonic transformation from subduction to transform faulting,indicating that the convergence between the Indian and Asian continents was once dominated by strike-slip motion.The 30±5 Ma tectonic event resulted in the uplift of the Tibetan Plateau,which was related to the late stage of the convergence between these two continents,namely,a hard collision.The 45±5 Ma tectonic event is in accordance with most of the criteria,corresponding to the initial collision between these two continents.展开更多
文摘In the Middle Jurassic,a large-scale tectonic-magmatic activities and hydrothermal mineralization occurred in the eastern Jilin province.The deposit types consist of the orogenic gold deposit,porphyry molybdenum deposit and skarn gold deposit,etc.,which constitute regional hydrothermal metallogenic series.The magmatic bodies related to mineralization belong to calc-alkaline series,which are characterized by active continental margins.The above-mentioned different types of deposits formed in a uniform tectonic setting,which resulted from the combined processes between the subduction of Pacific plate under the Eurasia plate and the persistent post-collisional convergent forces between the North China plate and the Siberian plate.The mineralizations were happening in the deceleration period,after which Paleo-Pacific plate was strongly subducted under the Eurasia continental block,i.e.transition period from compression to extension.
基金supported by the National Natural Science Foundation of China(Grant No.41106049)Special Funding for the Basic Scientific Research(Grant No.JT1106)
文摘The hydrothermal vent in Area A (37.78°S, 49.65°E) is the first active hydrothermal vent discovered on the Southwest Indian Ridge (SWlR). Heat source and adequate bulk permeability are two necessary factors for the formation of a hydrothermal vent. Along the SWIR 49.3°E to 51.2°E, the gravity-derived crustal thickness is up to 9.0 km, much thicker than the average thick- ness of the global oceanic crust. This characteristic indicates that the magma supply in this area is robust, which is possibly af- fected by a hotspot. The large-scale residual mantle Bouguer anomalies (RMBA) reveal prominent negative-gravity anomalies between the first-order ridge segment (from Indomed to Gallieni, 46.0°E to 52.0°E) and the Marion-Del Cano-Crozet region. These anomalies indicate the channel of the hotspot-ridge interaction. The tomography data corrected with theoretical thermal model indicate that the low-velocity anomalies corresponding to this channel can reach the base of the lithosphere. Near the hydrothermal vent area, the topography and crustal thickness at the off-axis area are extremely asymmetrical. South of the SWIR, the high topography corresponds to the thinning crustal thickness. The residual isostatic topography anomalies indicate that Area A is a deviation from the local isostatic equilibrium, similar to the characteristics of the transform fault inside corner. The forward profiles of the magnetic data indicate that the thinning magnetic layer at the south side of Area A corresponds to the shallow, high-velocity area revealed by the OBS, which is the result of tectonic extension of a detachment fault. The active tectonic processes in Area A can provide sufficient crustal permeability to the hydrothermal circulation and may form massive sulfide deposits.
文摘The tectono-magmatism in eastern China is a hotspot for the researches, and many hypotheses of that were discussed. There is a middle crust with solid, low velocity and high conductivity in eastern China, which is impossible to form"convection magmatic layer". The subduction and compression of oceanic plate induced to the lateral pressure for the eastern China lithosphere in the condition of increasing pressure and decreasing temperature, it is also impossible to form an extensively melting magma layer. In South China, the granitic zone migrates from west to east, their evolution cannot be explained by plate subduction. The original magmatic reservoirs are controlled by main faults and spheres, which occurred the tectonic detachment and formed in the process of decreasing pressure and increasing temperature. The magma only originates in very small part of lithosphere. The tectono-magmatism and tectonic detachment of eastern China lithosphere during the Jurassic and the Cretaceous are concentrate mainly near the intersections between the regional faults and middle crust or the Moho discontinuity, and then magma intrudes or erupts along faults. The tectono-magmatism of Cenozoic originates near the intersections between the regional high-angle normal faults and the bottom of lithosphere. Obviously, the different penetration depth of faults induces a different kind of magmatism.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0600106)the National Natural Science Foundation of China(Grant Nos.41402047&41373046)
文摘Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in the elements and isotopic compositions of these granites at about 127 Ma. The early stage(158–128 Ma) granites show slightly or no negative Eu anomalies, large ion lithophile elements enriched and heavy REE depleted(such as Y and Yb), belonging to typical I-type granite. The late stage(126–112 Ma) granites are characterized by A-type and/or highly fractionated I-type granite, with higher contents of SiO2, K2 O, Y, Yb and Rb/Sr ratio and lower contents of Sr, δEu value and Sr/Y ratio than that of the early-stage granites.Moreover, the whole rock Nd and Hf isotopic compositions of the granites younger than 127 Ma show more depleted than those of the older one. The two stages of Late Mesozoic granites were derived from a source region of the ancient basement of the southern margin of the NCC incorporated the mantle material. The late stage(126–112 Ma) granites contain more fractions of mantle material with depleted isotopic composition than the early ones. The granites record evidence for a strong crust-mantle interaction. They formed in an intracontinental extensional setting which was related to lithospheric thinning and asthenospheric upwelling in this region, which was possibly caused by westward subduction of the Paleo-Pacific plate. 127 Ma is an critical period of the transformation of the tectonic regime.
基金financially supported by the China Geology Survey(Grant Nos.1212011121098,1212010611805,12010911012,1212011120120)International Cooperation Program for Chinese Science and Technology(Grant No.2011DFA22460)Department of Science and Technology of Zhejiang Province of China(Grant No.2014C33023)
文摘The South China Block was formed through the collisional orogeny between the Cathaysia Block and the Yangtze Block in the Early Neoproterozoic.The northern,western and southern sides of the South China Block were affected by disappearance of the Paleo-Tethyan Ocean during the Paleozoic.The southern and northern sides of the South China Block were respectively collided with the Indo-China Block and North China Block in the latest Paleozoic to form the basic framework of the Eastern China.The Eastern China has been affected by the westward subduction of the Pacific Plate since the Mesozoic.Therefore,the South China Block was influenced by the three major tectonic systems,leading to a superposed compound tectonics.The comparative study of the Mesozoic geology between the South China Block and its surrounding areas suggests that although the Mesozoic South China Block was adjacent to the subduction zone of the western Pacific,no juvenile arc-type crust has been found in the eastern margin.The main Mesozoic geology in South China is characterized by reworking of ancient continental margins to intracontinental tectonics,lacking oceanic arc basalts and continental arc andesites.Therefore,a key to understanding of the Mesozoic geology in South China is to determine the temporal-spatial distribution and tectonic evolution of Mesozoic magmatic rocks in this region.This paper presents a review on the tectonic evolution of the South China Block through summarizing the magmatic rock records from the compressional to extensional tectonic process with the transition at the three juncture zones and using the deformation and geophysic data from the deep part of the South China continental lithosphere.Our attempt is to promote the study of South China’s geology and to make it as a typical target for development of plate tectonic theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.41672220 and 41130312)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB03010500)
文摘There exist three mainstream opinions regarding the timing of the initial collision between the Indian and Eurasian continents,namely,65±5,45±5,and 30±5 Ma.Five criteria are proposed for determining which tectonic event was related to the initial collision between India and Asia:the rapid decrease in the rate of plate motion,the cessation of magmatic activity originating from the subduction of oceanic crust,the end of sedimentation of oceanic facies,the occurrence of intracontinental deformation,and the exchange of sediments sourced from two continents.These criteria are used to constrain the nature of these tectonic events.It is proposed that the 65±5 Ma tectonic event is consistent with some of the criteria,but the upshot of this model is that the magmatic activity originating from the Tethyan subduction since the Mesozoic restarted along the southern margin of the Asian continent in this time after a brief calm,implying that the subduction of the Neotethys slab was still taking place.The magmatic activity that occurred along the southern margin of the Asian continent had a 7-Myr break during 72-65 Ma,which in this study is interpreted as having resulted from tectonic transformation from subduction to transform faulting,indicating that the convergence between the Indian and Asian continents was once dominated by strike-slip motion.The 30±5 Ma tectonic event resulted in the uplift of the Tibetan Plateau,which was related to the late stage of the convergence between these two continents,namely,a hard collision.The 45±5 Ma tectonic event is in accordance with most of the criteria,corresponding to the initial collision between these two continents.