针对传统的构音障碍诊断方法存在耗时高、成本高等问题,提出一种构音障碍语音的计算机自动识别方法。结合Gammatone频率倒谱系数(Gammatone Frequency Cepstrum Coefficients, GFCC)与常用声学特征形成组合声学特征,应用差分演化算法进...针对传统的构音障碍诊断方法存在耗时高、成本高等问题,提出一种构音障碍语音的计算机自动识别方法。结合Gammatone频率倒谱系数(Gammatone Frequency Cepstrum Coefficients, GFCC)与常用声学特征形成组合声学特征,应用差分演化算法进行特征选择,并使用逻辑回归分类器对构音障碍语音进行识别。将Torgo构音障碍语音数据库分成3个语音子集,分别是非词、短词语、限制句子集,提取24维GFCC和37维常用的声学特征构成组合声学特征,最后使用差分演化算法和逻辑回归分类器进行分类识别。实验表明:使用差分演化算法可以有效选择出具有更佳识别能力的特征,从而显著提高构音障碍识别率。在非词子集上的实验准确率达到98.18%,召回率为98.3%,精确率为98.3%。展开更多
文摘针对传统的构音障碍诊断方法存在耗时高、成本高等问题,提出一种构音障碍语音的计算机自动识别方法。结合Gammatone频率倒谱系数(Gammatone Frequency Cepstrum Coefficients, GFCC)与常用声学特征形成组合声学特征,应用差分演化算法进行特征选择,并使用逻辑回归分类器对构音障碍语音进行识别。将Torgo构音障碍语音数据库分成3个语音子集,分别是非词、短词语、限制句子集,提取24维GFCC和37维常用的声学特征构成组合声学特征,最后使用差分演化算法和逻辑回归分类器进行分类识别。实验表明:使用差分演化算法可以有效选择出具有更佳识别能力的特征,从而显著提高构音障碍识别率。在非词子集上的实验准确率达到98.18%,召回率为98.3%,精确率为98.3%。