概述了配制化学镀铜液时添加一次化学镀铜所需要的金属离子、络合剂、还原剂和 p H调整剂 ,到化学镀铜结束时镀液中的金属离子 ,还原剂和 p H调整剂将全部消耗为特征的化学镀铜液 ,这样镀液中不会积累还原反应生成物或残留铜粉 ,而且容...概述了配制化学镀铜液时添加一次化学镀铜所需要的金属离子、络合剂、还原剂和 p H调整剂 ,到化学镀铜结束时镀液中的金属离子 ,还原剂和 p H调整剂将全部消耗为特征的化学镀铜液 ,这样镀液中不会积累还原反应生成物或残留铜粉 ,而且容易回收络合剂等有效成分 。展开更多
The microstructure and the associated hardness, strength and electrical conductivity of a new Al-Zn-Mg-Cu alloy during one-step ageing treatment were systematically studied. The results show that the electrical conduc...The microstructure and the associated hardness, strength and electrical conductivity of a new Al-Zn-Mg-Cu alloy during one-step ageing treatment were systematically studied. The results show that the electrical conductivity of the alloy increased continuously with increasing ageing temperature and ageing time. At the early stage of ageing, the hardness and strength of the alloy increased rapidly and then reached the peak value. When aged at 120 °C, the hardness and strength maintained at high level for a long time after the peak value. The main precipitations are GPI zones, GPII zones and metastable η′ phase. GPI and GPII zones are found in the alloy after ageing for 24 h at 120 °C, which indicates that some stable GP zones can exist through the ageing process. When aged at 160 °C, the hardness and strength decreased rapidly after the peak value. The precipitation process is significantly promoted compared with that aged at 120 °C. Both GPI zones and GPII zones disappeared after ageing for 1 h at 160 °C. The main precipitates are η′ phase when aged at 160 °C for 1 h. The main precipitates are η phase when the ageing time prolongs to 24 h.展开更多
The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). Th...The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.展开更多
Research on information spillover effects between financial markets remains active in the economic community. A Granger-type model has recently been used to investigate the spillover between London Metal Exchange(LME)...Research on information spillover effects between financial markets remains active in the economic community. A Granger-type model has recently been used to investigate the spillover between London Metal Exchange(LME) and Shanghai Futures Exchange(SHFE) ,however,possible correlation between the future price and return on different time scales have been ignored. In this paper,wavelet multiresolution decomposition is used to investigate the spillover effects of copper future returns between the two markets. The daily return time series are decomposed on 2n(n=1,…,6) frequency bands through wavelet mul-tiresolution analysis. The correlation between the two markets is studied with decomposed data. It is shown that high frequency detail components represent much more energy than low-frequency smooth components. The relation between copper future daily returns in LME and that in SHFE are different on different time scales. The fluctuations of the copper future daily returns in LME have large effect on that in SHFE in 32-day scale,but small effect in high frequency scales. It also has evidence that strong effects exist between LME and SHFE for monthly responses of the copper futures but not for daily responses.展开更多
The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography w...The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy.The quench-inducedηphase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate,which contributes to an increment of hardness by 24%(HV 26)compared with that of the water-quenched one.However,the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate.Meanwhile,the water-quenched alloy after peak aging also has the highest strength,elongation,and corrosion resistance,which is due to the high driving force and increased number density of aging precipitates,and the narrowed precipitate free zones.展开更多
Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transm...Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy.展开更多
The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron m...The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.展开更多
Low critical temperature limits the application of CO_2 trans-critical power cycle.The binary mixture of R290/CO_2has higher critical temperature.Using mixture fluid may solve the problem that subcritical CO_2 is hard...Low critical temperature limits the application of CO_2 trans-critical power cycle.The binary mixture of R290/CO_2has higher critical temperature.Using mixture fluid may solve the problem that subcritical CO_2 is hardly condensed by conventional cooling water.In this article,theoretical analysis is executed to study the performance of the zeotropic mixture for trans-critical power cycle using low-grade liquid heat source with temperature of200℃.The results indicated that the problem that CO_2 can't be condensed in power cycle by conventional cooling water can be solved by mixing R290 to CO_2.Variation trend of outlet temperature of thermal oil in supercritical heater with heating pressure is determined by the composition of the mixture fluid.Gliding temperature causes the maximum outlet temperature of cooling water with the increase of mass fraction of R290.There are the maximum values for cycle thermal efficiency and net power output with the increase of supercritical heating pressure.展开更多
The efficiency of any organizations at manufacturing sector or service sector, profit making or non-profit making, is most important factor for survival and growth of the organization. The Data Envelopment Analysis (...The efficiency of any organizations at manufacturing sector or service sector, profit making or non-profit making, is most important factor for survival and growth of the organization. The Data Envelopment Analysis (DEA) technique is one of the most popular and effective tool to measure relative efficiency hence is appropriate to make comparison among similar organizations with multiple output and input. This study performs frontier analysis and measures the relative efficiency of Nepalese commercial banks using DEA approach with two output and two input variables.展开更多
Large leisure activities usually use large sport facilities. There is often no serious problem with people gathering, but both incomplete facilities and negligence of people security manage may court injury or death. ...Large leisure activities usually use large sport facilities. There is often no serious problem with people gathering, but both incomplete facilities and negligence of people security manage may court injury or death. The purpose of this study is to analyze crowded nodes and to improve evacuation path use Simulex models. The fastest and safest way to achieve safe egress was then well planned. For turn locations, it was found that fixing the plane angle did not significantly raise the overall exiting efficiency. However, replacing the right angle or other angles with arc angle makes overall exiting moving line more fluent. For multito single-directional converging T-junction intersections, modification of turn angle increased the movement fluency, with the higher the modified angle, the higher in fluency. However, changing to round angle did not have as significant effect as expected while gate opening width must be increased to 1.0 m before more significant effects were produced. The results showed that modifying turn angles to 60° produces better improvements.展开更多
In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objecti...In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objectives, and the relationships of the output power, the heat-work conversion efficiency, the entropy generation rate, the entropy generation numbers, the entransy loss rate, the entransy loss coefficient, the entransy dissipation rate and the entransy variation rate associated with work are discussed. The applicability of the entropy generation minimization and the entransy theory to the analyses is also analyzed. It is found that smaller entropy generation rate does not always lead to larger output power, while smaller entropy generation numbers do not always lead to larger heat-work conversion efficiency, either. In our calculations, both larger entransy loss rate and larger entransy variation rate associated with work correspond to larger output power, while larger entransy loss coefficient results in larger heat-work conversion efficiency. It is also found that the concept of entransy dissipation is not always suitable for the analyses because it was developed for heat transfer.展开更多
文摘The microstructure and the associated hardness, strength and electrical conductivity of a new Al-Zn-Mg-Cu alloy during one-step ageing treatment were systematically studied. The results show that the electrical conductivity of the alloy increased continuously with increasing ageing temperature and ageing time. At the early stage of ageing, the hardness and strength of the alloy increased rapidly and then reached the peak value. When aged at 120 °C, the hardness and strength maintained at high level for a long time after the peak value. The main precipitations are GPI zones, GPII zones and metastable η′ phase. GPI and GPII zones are found in the alloy after ageing for 24 h at 120 °C, which indicates that some stable GP zones can exist through the ageing process. When aged at 160 °C, the hardness and strength decreased rapidly after the peak value. The precipitation process is significantly promoted compared with that aged at 120 °C. Both GPI zones and GPII zones disappeared after ageing for 1 h at 160 °C. The main precipitates are η′ phase when aged at 160 °C for 1 h. The main precipitates are η phase when the ageing time prolongs to 24 h.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(2010CB731706)supported by the National Basic Research Program of China
文摘The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.
文摘Research on information spillover effects between financial markets remains active in the economic community. A Granger-type model has recently been used to investigate the spillover between London Metal Exchange(LME) and Shanghai Futures Exchange(SHFE) ,however,possible correlation between the future price and return on different time scales have been ignored. In this paper,wavelet multiresolution decomposition is used to investigate the spillover effects of copper future returns between the two markets. The daily return time series are decomposed on 2n(n=1,…,6) frequency bands through wavelet mul-tiresolution analysis. The correlation between the two markets is studied with decomposed data. It is shown that high frequency detail components represent much more energy than low-frequency smooth components. The relation between copper future daily returns in LME and that in SHFE are different on different time scales. The fluctuations of the copper future daily returns in LME have large effect on that in SHFE in 32-day scale,but small effect in high frequency scales. It also has evidence that strong effects exist between LME and SHFE for monthly responses of the copper futures but not for daily responses.
基金the financial supports from the National Natural Science Foundation of China(No.51871033)the Opening Project of State Key Laboratory for Advanced Metals and Materials,China(No.2020-ZD02)。
文摘The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy.The quench-inducedηphase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate,which contributes to an increment of hardness by 24%(HV 26)compared with that of the water-quenched one.However,the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate.Meanwhile,the water-quenched alloy after peak aging also has the highest strength,elongation,and corrosion resistance,which is due to the high driving force and increased number density of aging precipitates,and the narrowed precipitate free zones.
基金Project(2017YFB0306300)supported by the National Key Research and Development Program of ChinaProject(2017ZX04005001)supported by the National Science and Technology Major Project,China+2 种基金Project(JCKY2014203A001)supported by National Defense Program of ChinaProjects(51905551,51675538,51601060)supported by the National Natural Science Foundation of ChinaProjects(Kfkt2018-03,zzYJKT2019-11)supported by State Key Laboratory of High-Performance Complex Manufacturing,China。
文摘Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy.
基金Project(2012CB619502)supported by the National Basic Research Program of ChinaProject(2016YFB0300800)supported by the National Key Research and Development Program of China+1 种基金Project(CALT201507)supported by the CALT Research Innovation Partnership Fund,ChinaProject(HPCM-201403)supported by the State Key Laboratory of High Performance Complex Manufacturing,China
文摘The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.
基金Project 51306198 supported by the National Natural Science Foundation of China
文摘Low critical temperature limits the application of CO_2 trans-critical power cycle.The binary mixture of R290/CO_2has higher critical temperature.Using mixture fluid may solve the problem that subcritical CO_2 is hardly condensed by conventional cooling water.In this article,theoretical analysis is executed to study the performance of the zeotropic mixture for trans-critical power cycle using low-grade liquid heat source with temperature of200℃.The results indicated that the problem that CO_2 can't be condensed in power cycle by conventional cooling water can be solved by mixing R290 to CO_2.Variation trend of outlet temperature of thermal oil in supercritical heater with heating pressure is determined by the composition of the mixture fluid.Gliding temperature causes the maximum outlet temperature of cooling water with the increase of mass fraction of R290.There are the maximum values for cycle thermal efficiency and net power output with the increase of supercritical heating pressure.
文摘The efficiency of any organizations at manufacturing sector or service sector, profit making or non-profit making, is most important factor for survival and growth of the organization. The Data Envelopment Analysis (DEA) technique is one of the most popular and effective tool to measure relative efficiency hence is appropriate to make comparison among similar organizations with multiple output and input. This study performs frontier analysis and measures the relative efficiency of Nepalese commercial banks using DEA approach with two output and two input variables.
文摘Large leisure activities usually use large sport facilities. There is often no serious problem with people gathering, but both incomplete facilities and negligence of people security manage may court injury or death. The purpose of this study is to analyze crowded nodes and to improve evacuation path use Simulex models. The fastest and safest way to achieve safe egress was then well planned. For turn locations, it was found that fixing the plane angle did not significantly raise the overall exiting efficiency. However, replacing the right angle or other angles with arc angle makes overall exiting moving line more fluent. For multito single-directional converging T-junction intersections, modification of turn angle increased the movement fluency, with the higher the modified angle, the higher in fluency. However, changing to round angle did not have as significant effect as expected while gate opening width must be increased to 1.0 m before more significant effects were produced. The results showed that modifying turn angles to 60° produces better improvements.
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1710251)
文摘In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objectives, and the relationships of the output power, the heat-work conversion efficiency, the entropy generation rate, the entropy generation numbers, the entransy loss rate, the entransy loss coefficient, the entransy dissipation rate and the entransy variation rate associated with work are discussed. The applicability of the entropy generation minimization and the entransy theory to the analyses is also analyzed. It is found that smaller entropy generation rate does not always lead to larger output power, while smaller entropy generation numbers do not always lead to larger heat-work conversion efficiency, either. In our calculations, both larger entransy loss rate and larger entransy variation rate associated with work correspond to larger output power, while larger entransy loss coefficient results in larger heat-work conversion efficiency. It is also found that the concept of entransy dissipation is not always suitable for the analyses because it was developed for heat transfer.