Integrating two different catalytic active sites into one composite is a useful 2-in-1 strategy for designing high-efficient bifunctional catalysts,which can easily tailor the activity of each reaction.Hence,we adopt ...Integrating two different catalytic active sites into one composite is a useful 2-in-1 strategy for designing high-efficient bifunctional catalysts,which can easily tailor the activity of each reaction.Hence,we adopt the 2-in-1 strategy to design the metal oxyhydroxide supported on N-doped porous carbons(PA-CoFe@NPC)as the oxygen bifunctional catalyst,where NPC provides the activity for oxygen reduction reaction(ORR)while the metal oxyhydroxide is responsible for oxygen evolution reaction(OER).Results demonstrate that the PA-CoFe@NPC indeed exhibits both super ORR and OER activities.Impressively,using bifunctional PA-CoFe@NPC as the oxygen electrode,the resulting Zn-air battery exhibits outstanding charge and discharge performance with the peak power density of 156.3 mW cm^(-2),and also exhibits a long-term cycle stability with continuous cyclic charge and discharge of 170 hours that is obviously better than the 20%Pt/C+IrO_(2)based one.The 2-in-1 strategy in this work can be efficiently extended to design other bi-or multi-functional electrocatalysts.展开更多
Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the...Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts.展开更多
文摘Integrating two different catalytic active sites into one composite is a useful 2-in-1 strategy for designing high-efficient bifunctional catalysts,which can easily tailor the activity of each reaction.Hence,we adopt the 2-in-1 strategy to design the metal oxyhydroxide supported on N-doped porous carbons(PA-CoFe@NPC)as the oxygen bifunctional catalyst,where NPC provides the activity for oxygen reduction reaction(ORR)while the metal oxyhydroxide is responsible for oxygen evolution reaction(OER).Results demonstrate that the PA-CoFe@NPC indeed exhibits both super ORR and OER activities.Impressively,using bifunctional PA-CoFe@NPC as the oxygen electrode,the resulting Zn-air battery exhibits outstanding charge and discharge performance with the peak power density of 156.3 mW cm^(-2),and also exhibits a long-term cycle stability with continuous cyclic charge and discharge of 170 hours that is obviously better than the 20%Pt/C+IrO_(2)based one.The 2-in-1 strategy in this work can be efficiently extended to design other bi-or multi-functional electrocatalysts.
基金supported by the National Natural Science Foundation of China NSFC(51702166)Tianjin Municipal Science and Technology Bureau(17JCZDJC37100)~~
文摘Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts.