期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
新型电极材料的研究进展
1
作者 汪永霞 王敏敏 《分析化学进展》 2021年第3期200-216,共17页
电解水是大规模制氢的重要途径,为了降低阳极阴极过电位以节约能耗,研究开发低过电位、高催化活性的电极材料具有重要的意义。影响电极材料催化活性的主要因素有结构因素和能量因素。本文主要简述了电解水的基本原理,以及电极材料的研... 电解水是大规模制氢的重要途径,为了降低阳极阴极过电位以节约能耗,研究开发低过电位、高催化活性的电极材料具有重要的意义。影响电极材料催化活性的主要因素有结构因素和能量因素。本文主要简述了电解水的基本原理,以及电极材料的研究现状,期待未来能够开发出具有低过电位、高催化活性和高稳定性的新型电解水电极材料。 展开更多
关键词 电解水 析氧电极材料 电极材料 结构 催化活性
下载PDF
Effect of doping Bi on oxygen evolution potential and corrosion behavior of Pb-based anode in zinc electrowinning 被引量:5
2
作者 赖延清 衷水平 +4 位作者 蒋良兴 吕晓军 陈佩如 李劼 刘业翔 《Journal of Central South University》 SCIE EI CAS 2009年第2期236-241,共6页
A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructure... A new anodic material of ternary Pb-0.8%Ag-(0-5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi.The anodic oxygen evolution potential,corrosion rate,surface products after polarization,and microstructures before and after polarization were studied and compared with those of Pb-0.8%Ag anode used in industry.The results show the anodic overpotential decreases with the increase of Bi content in the alloys.When the content of Bi is 1.0%(mass fraction),the anodic overpotential is 40-50 mV lower than that of Pb-0.8%Ag anode.While the corrosion rate decreases and then increases with the increase of Bi content.The Pb-0.8%Ag-0.1%Bi anode has the lowest corrosion rate(0.090 6 mg/(h·cm2).Doping Bi influences the structure of the anodic layer,but does not change the phase.The Pb-0.8%Ag-1.0%Bi anode layer is of a more fine-grained structure compared with Pb-0.8%Ag anode. 展开更多
关键词 Pb-Ag anode doping Bi zinc electrowinning oxygen evolution potential corrosion rate
下载PDF
Preparation and electrochemical characterization of activated carbons by chemical-physical activation 被引量:4
3
作者 张治安 崔沐 +2 位作者 赖延清 李劼 刘业翔 《Journal of Central South University》 SCIE EI CAS 2009年第1期91-95,共5页
A process was proposed based on the combination of chemical and physical activation for the production of activated carbons used as the electrode material for electric double layer capacitor (EDLC). By material charac... A process was proposed based on the combination of chemical and physical activation for the production of activated carbons used as the electrode material for electric double layer capacitor (EDLC). By material characterization and electrochemical methods, the influences of the activitation process on the specific surface area, pore structure and electrochemical properties of the activated carbons were investigated. The results show that specific surface area, the mesopore volume, and the specific capacitance increase with the increase of the mass ratio of KOH to char (m(KOH)/m(char)) and the activation time, respectively. When m(KOH)/m(char) is 4.0, the specific surface area and the mesopore volume reach the maximum values, i.e. 1 960 m2/g and 0.308 4 cm3/g, and the specific capacitance is 120.7 F/g synchronously. Compared with the chemical activation, the activated carbons prepared by chemical-physical activation show a larger mesopore volume, a higher ratio of mesopore and a larger specific capacitance. 展开更多
关键词 activated carbon electric double layer capacitor chemical-physical activation pore structure
下载PDF
Iron-induced 3D nanoporous iron-cobalt oxyhydroxide on carbon cloth as a highly efficient electrode for oxygen evolution reaction
4
作者 Guodong Chen Jian Du +3 位作者 Xilong Wang Xiaoyue Shi Zonghua Wang Han-Pu Liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1540-1547,共8页
The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tunin... The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tuning the morphology and structure and the enhancement of the reactivity of active sites by the incorporation of other components are the two main strategies for the enhancement of their catalytic performance.In this study,by combining these two strategies,a unique three-dimensional nanoporous Fe-Co oxyhydroxide layer coated on the carbon cloth(3D-FeCoOOH/CC)was successfully synthesized by in situ electro-oxidation methods,and directly used as a working electrode.The electrode,3D-FeCoOOH/CC,was obtained by the Fe doping process in(NH4)2Fe(SO4)2,followed by continuous in situ electro-oxidization in alkaline medium of“micro go chess piece”arrays on the carbon cloth(MCPAs/CC).Micro characterizations illustrated that the go pieces of MCPAs/CC were completely converted into a thin conformal coating on the carbon cloth fibers.The electrochemical test results showed that the as-synthesized 3D-FeCoOOH/CC exhibited enhanced activity for OER with a low overpotential of 259 mV,at a current density of 10 mA cm^–2,and a small Tafel slope of 34.9 mV dec^–1,as well as superior stability in 1.0 mol L^–1 KOH solution.The extensive analysis revealed that the improved electrochemical surface area,conductivity,Fe-Co bimetallic composition,and the unique 3D porous structure together contributed to the enhanced OER activity of 3D-FeCoOOH/CC.Furthermore,the synthetic strategy applied in this study could be extended to fabricate a series of Co-based electrode materials with the dopant of other transition elements. 展开更多
关键词 3D nanoporous iron-cobalt oxyhydroxide layer Micro go chess piece arrays Electrode material Electro-oxidation Oxygen evolution reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部