A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lo...A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lolium multiflorum) on Orthic Allophanic Soil,following the application of three rates of triple superphosphate(TSP)(0,50,and 100 mg·kg^-1P) under a glasshouse condition.The application of P fertilizer enhanced P availability in the rhizospheric of radiata seedlings and the bulk soils in a P-deficient site.P availability in the rhizospheric soils of ryegrass and broom,grown in association with radiata,were also increased by the presence of radiata roots.P concentrations in new shoot needles,old shoot needles,stem and roots of radiata pine increased with increase rates of TSP application,but the effects of ryegrass and broom on P nutrition of radiata seedlings depended on the soil P status.In the absence of P fertilizer addition(control treatment),P concentrations in new shoot needles,old shoot needles,stem,and roots of radiata grown in association with broom were higher than those with ryegrass,whereas,when P fertilizer was added(50 and 100 mg·kg^-1) the P concentration was lower.This is probably related to the growth of broom that may have removed much of the plant-available P in the soil as indicated by the consistently lower Bray-2 P concentration in the rhizosphere soil of radiata in association with broom than that in the rhizosphere soil of radiata in association with grass at the two high P rates.Furthermore,in the high P fertile soil(application rate of 100 mg·kg^-1),the dry matter yield of radiata was lower when it was grown with broom than with ryegrass.This result suggests that in moderate to high P fertile soils,P.radiata seedlings grow better with ryegrass than with broom,because broom grows vigorously in high P fertile soil and competes with P.radiata for P and perhaps for other nutrients as well.展开更多
Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this pape...Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation.展开更多
基金supported by Massey University and the Centre for Sustainable Forest Management at Forest Research Institute, New Zealand
文摘A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lolium multiflorum) on Orthic Allophanic Soil,following the application of three rates of triple superphosphate(TSP)(0,50,and 100 mg·kg^-1P) under a glasshouse condition.The application of P fertilizer enhanced P availability in the rhizospheric of radiata seedlings and the bulk soils in a P-deficient site.P availability in the rhizospheric soils of ryegrass and broom,grown in association with radiata,were also increased by the presence of radiata roots.P concentrations in new shoot needles,old shoot needles,stem and roots of radiata pine increased with increase rates of TSP application,but the effects of ryegrass and broom on P nutrition of radiata seedlings depended on the soil P status.In the absence of P fertilizer addition(control treatment),P concentrations in new shoot needles,old shoot needles,stem,and roots of radiata grown in association with broom were higher than those with ryegrass,whereas,when P fertilizer was added(50 and 100 mg·kg^-1) the P concentration was lower.This is probably related to the growth of broom that may have removed much of the plant-available P in the soil as indicated by the consistently lower Bray-2 P concentration in the rhizosphere soil of radiata in association with broom than that in the rhizosphere soil of radiata in association with grass at the two high P rates.Furthermore,in the high P fertile soil(application rate of 100 mg·kg^-1),the dry matter yield of radiata was lower when it was grown with broom than with ryegrass.This result suggests that in moderate to high P fertile soils,P.radiata seedlings grow better with ryegrass than with broom,because broom grows vigorously in high P fertile soil and competes with P.radiata for P and perhaps for other nutrients as well.
基金funded by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2012BAC23B01)National Natural Science Foundation of China(Grant Nos.41271098,41171066)China Special Fund for Meteorological Research in the Public Interest(GYHY201206026)
文摘Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation.