期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
引入类别关键词的朴素贝叶斯林业文本分类 被引量:2
1
作者 郭肇毅 《乐山师范学院学报》 2022年第8期39-43,共5页
随着互联网的迅猛发展,网络上的文本越来越多,对其进行有效的分类,能方便人们快速获取到有用的信息。但在实际应用中,往往只需针对特定领域的文本进行分类,例如,林业文本分类。对于文本分类这一任务,现在有大量的神经网络方面的优秀模... 随着互联网的迅猛发展,网络上的文本越来越多,对其进行有效的分类,能方便人们快速获取到有用的信息。但在实际应用中,往往只需针对特定领域的文本进行分类,例如,林业文本分类。对于文本分类这一任务,现在有大量的神经网络方面的优秀模型可供使用,但这些模型常常需要耗费大量的时间、资源进行训练,而朴素贝叶斯这个模型虽然简单,但是,其分类效果已经基本满足工程所需。在原始朴素贝叶斯的基础上,引入类别关键词的因素,能够进一步提升分类的效果。 展开更多
关键词 林业文本分类 朴素贝叶斯 类别关键词
下载PDF
基于优化LM模糊神经网络的不均衡林业信息文本分类算法 被引量:4
2
作者 陈宇 许莉薇 《中南林业科技大学学报》 CAS CSCD 北大核心 2015年第4期27-32,59,共7页
为解决不均衡林业信息文本分类中少数类分类正确率低问题,提出了一种基于优化LM模糊神经网络的不均衡林业信息文本分类算法。在阐述优化LM模糊神经网络算法原理的基础上,提取不均衡林业信息文本特征矩阵训练分类器的各项参数,实现对不... 为解决不均衡林业信息文本分类中少数类分类正确率低问题,提出了一种基于优化LM模糊神经网络的不均衡林业信息文本分类算法。在阐述优化LM模糊神经网络算法原理的基础上,提取不均衡林业信息文本特征矩阵训练分类器的各项参数,实现对不均衡林业信息文本的精准与快速分类。实验结果表明该算法对少数类辨识准确率高,优于神经网络分类法以及SVM算法、模糊神经网络算法,为不均衡林业信息文本的分类提供了新思路。 展开更多
关键词 不均衡文本分类算法 不均衡林业信息文本分类 优化LM模糊神经网络 分类
下载PDF
浅谈基于粗集理论的文本归类系统
3
作者 孟坛 张蓉 《河北工业科技》 CAS 2010年第6期414-416,共3页
文本归类是处理大量文本数据自动分类的重要技术。基于粗集理论建立的林业文本信息归类系统,是在已知类别的训练集的基础上,通过分析训练数据样本,建立决策表产生区分矩阵构造出区分函数,并化简它,得到最小属性约简,最后应用Apriori算... 文本归类是处理大量文本数据自动分类的重要技术。基于粗集理论建立的林业文本信息归类系统,是在已知类别的训练集的基础上,通过分析训练数据样本,建立决策表产生区分矩阵构造出区分函数,并化简它,得到最小属性约简,最后应用Apriori算法产生最终分类的规则表,利用产生的规则表,可将林业文本信息数据进行自动归类。 展开更多
关键词 粗集 林业文本信息分类 APRIORI算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部