期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于注意力机制和改进DeepLabV3+的无人机林区图像地物分割方法
1
作者 赵玉刚 刘文萍 +3 位作者 周焱 陈日强 宗世祥 骆有庆 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期93-103,共11页
【目的】为提取林区主要地物分布信息,基于注意力机制和DeepLabV3+语义分割网络提出一种面向无人机林区图像的地物分割方法Tree-DeepLab。【方法】根据不同的林区地物类型对图像进行标注,标注类型分为法国梧桐(Platanus orientalis)、银... 【目的】为提取林区主要地物分布信息,基于注意力机制和DeepLabV3+语义分割网络提出一种面向无人机林区图像的地物分割方法Tree-DeepLab。【方法】根据不同的林区地物类型对图像进行标注,标注类型分为法国梧桐(Platanus orientalis)、银杏(Ginkgo biloba)、杨树(Populus sp.)、草地、道路和裸地6类,以获取语义分割数据集。对语义分割网络进行改进:(1)将带有分组注意力机制的ResNeSt101网络作为DeepLabV3+语义分割网络的主干网络;(2)将空洞空间卷积池化金字塔模块的连接方式设置成串并行相结合形式,同时改变空洞卷积的扩张率组合;(3)解码器增加浅层特征融合分支;(4)解码器增加空间注意力模块;(5)解码器增加高效通道注意力模块。【结果】在自制数据集基础上进行训练和测试,试验结果表明:Tree-DeepLab语义分割模型的平均像素精度和平均交并比分别为97.04%和85.01%,较原始DeepLabV3+分别提升4.03和14.07个百分点,且优于U-Net和PSPNet语义分割网络。【结论】Tree-DeepLab语义分割网络能够有效分割无人机航拍林区图像,以获取林区主要地物类型的分布信息。 展开更多
关键词 无人机 地物分割 林区图像 DeepLabV3+ 注意力机制 ResNeSt
原文传递
一种快速提高林区影像可读性的算法
2
作者 王柯 付鋆萍 《徐州工程学院学报(自然科学版)》 CAS 2010年第4期47-52,共6页
在摄影测量应用于森林资源调查的过程中,由于南方特有的低矮灌木遮挡,使得数码摄影成像的图像常常处于阴暗背景中,不利于目视判读,从而造成树干边缘提取的结果变得不准确.图像增强的传统方法,已经可以达到比较好的效果,但是林区图像背... 在摄影测量应用于森林资源调查的过程中,由于南方特有的低矮灌木遮挡,使得数码摄影成像的图像常常处于阴暗背景中,不利于目视判读,从而造成树干边缘提取的结果变得不准确.图像增强的传统方法,已经可以达到比较好的效果,但是林区图像背景复杂、色调单一.针对这一特征,从可读性方面进行了改进.通过改进PDE的相关算法,提出一种同时进行背景平滑和目标增强的方法,使得处理效率上比传统的方法提高80%~93.3%.使用ISCRl和ISCRg对结果进行辅助对比,发现该方法在噪声去除处理方面还有待提高. 展开更多
关键词 林区图像 PDE 图像增强 非线性 可读性 快速迭代
下载PDF
Review of Shadow Detection and De-shadowing Methods in Remote Sensing 被引量:10
3
作者 AmirReza SHAHTAHMASSEBI YANG Ning +2 位作者 WANG Ke Nathan MOORE SHEN Zhangquan 《Chinese Geographical Science》 SCIE CSCD 2013年第4期403-420,共18页
Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and change detection.In these images,shadow is generally produced by different objects,namely,cloud,m... Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and change detection.In these images,shadow is generally produced by different objects,namely,cloud,mountain and urban materials.The shadow correction process consists of two steps:detection and de-shadowing.This paper reviews a range of techniques for both steps,focusing on urban regions(urban shadows),mountainous areas(topographic shadow),cloud shadows and composite shadows.Several issues including the problems and the advantages of those algorithms are discussed.In recent years,thresholding and recovery techniques have become important for shadow detection and de-shadowing,respectively.Research on shadow correction is still an important topic,particularly for urban regions(in high spatial resolution data) and mountainous forest(in high and medium spatial resolution data).Moreover,new algorithms are needed for shadow correction,especially given the advent of new satellite images. 展开更多
关键词 SHADOW detection de-shadowing URBAN FOREST
下载PDF
Integrating Remote Sensing and Field Survey to Map Shallow Water Benthic Habitat for the Kingdom of Bahrain
4
作者 Sabah Aljenaid Eman Ghoneim +5 位作者 Mohammed Abido Khalil AlWedhai Ghadeer Khadim Saeed Mansoor Wisam EL-Deen Mohd Nadir Abd Hameed 《Journal of Environmental Science and Engineering(B)》 2017年第4期176-200,共25页
Identification and classification, as well as mapping of marine habitats, are of primary importance to plan management activities, especially in disturbed ecosystems like the ones in the marine areas of Bahrain. Remot... Identification and classification, as well as mapping of marine habitats, are of primary importance to plan management activities, especially in disturbed ecosystems like the ones in the marine areas of Bahrain. Remotely sensed Landsat-8 imagery coupled with field survey was used to identify, classify and map the benthic habitats in Bahrain marine area. The used geospatial techniques include advanced image processing procedures, which comprise of radiometric and atmospheric corrections, sun glint removal, water depth correction and image classification. Extensive ground-truthing analyses through in-situ field surveys by a team of scuba divers were conducted in October 2014 and June 2015 to inform and refine the classifications. The variables collected from this survey included physical and chemical characteristics of the water, habitat type, substrata, fauna and flora. A total of 176 field points were collected and utilized to perform an accurate assessment of the image classification. Initial habitat classification resulted in 20 habitat categories. However, due to the inability of the Landsat-8 sensors to accurately discriminate that level of classification, categories were merged into seven classes. The derived map shows that the benthic marine habitats of Bahrain consist of deep water (2,523 km2), rock (1,738 km2), sand (1,191 km2), deep water/sand (1,006 km2), algae (922 km2), seagrass (591 km2) and corals (275.50 km2). Although limited by the spatial and spectral resolutions of Landsat 8, the used methods produced a suitable map of the benthic habitats within the marine area of Bahrain with an overall accuracy of 84.1%. The use of very high spatial resolution satellite imagery will most likely increase such accuracy significantly. 展开更多
关键词 Landsat 8 MARINE water column correction scuba diving GIS (Geographic Information System)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部