With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosi...With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend.展开更多
Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fract...Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.展开更多
A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomyc...A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomycorrhizal colonization of the fine roots. Representative plots of three trials, Giilzow (GUL), Vipperow (VIP) and Rostock (ROS), were used to measure the topsoil inventories at the very beginning and after six (GUL), seven (VIP) and ten (ROS) years of afforestation with fast growing trees. The effect on soil organic carbon, plant available nutrients, reaction, bulk density, porosity and water conditions was analyzed, Arable soils without tree coppice were used as controls. Additionally, the endoand ectomycorrhizal colonization of two Salix and two Populus clones were investigated at one site (GUL) in 2002. The amounts of organic carbon in the topsoil increased significantly (P 〈 0.01) presumably induced by leaf and root litter and also by the lack of tillage. The soil bulk density significantly decreased and the porosity of the soil increased significantly (both P 〈 0.01). The proportion of medium pores in the soil also rose significantly (P 〈 0.05 and 0.01). Generally, afforestation of arable soils improved soil water retention. Ectomycorrhizas dominated the mycorrhizal formation of the Salix and Populus clones, with the accumulation of organic matter in the topsoil suspected of supporting the ectomycorrhizal formation. Thus, agroforestry with Salix and Populus spp. conspicuously affected chemical and additionally physical properties of the top layer of Cambisols within a period of six years.展开更多
基金Supported by Special Fund for Technological Development and Research of Provincial Scientific Research Institutions(KYYS-2015-16)~~
文摘With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend.
文摘Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.
文摘A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomycorrhizal colonization of the fine roots. Representative plots of three trials, Giilzow (GUL), Vipperow (VIP) and Rostock (ROS), were used to measure the topsoil inventories at the very beginning and after six (GUL), seven (VIP) and ten (ROS) years of afforestation with fast growing trees. The effect on soil organic carbon, plant available nutrients, reaction, bulk density, porosity and water conditions was analyzed, Arable soils without tree coppice were used as controls. Additionally, the endoand ectomycorrhizal colonization of two Salix and two Populus clones were investigated at one site (GUL) in 2002. The amounts of organic carbon in the topsoil increased significantly (P 〈 0.01) presumably induced by leaf and root litter and also by the lack of tillage. The soil bulk density significantly decreased and the porosity of the soil increased significantly (both P 〈 0.01). The proportion of medium pores in the soil also rose significantly (P 〈 0.05 and 0.01). Generally, afforestation of arable soils improved soil water retention. Ectomycorrhizas dominated the mycorrhizal formation of the Salix and Populus clones, with the accumulation of organic matter in the topsoil suspected of supporting the ectomycorrhizal formation. Thus, agroforestry with Salix and Populus spp. conspicuously affected chemical and additionally physical properties of the top layer of Cambisols within a period of six years.