The northeastern China, the United States, and the western Europe are important agricultural regions both on the global and regional scales. The westem Europe has a longer history of agricultural land development than...The northeastern China, the United States, and the western Europe are important agricultural regions both on the global and regional scales. The westem Europe has a longer history of agricultural land development than the eastem United States. These two regions have changed from the deforestation and reclamation phase in the past to the current land abandonment and reforestation phase. Compared with the two regions, large-scale land exploitation has only been practiced in the northeastern China during the last century. After a short high-intensity deforestation and reclamation period, agricultural and forest lands are basically in a dynamic steady state. By comparing domestic and international agro-forestry development and considering the ecological environment and socio-economic bene- fits that can be derived from agro-forestry, this paper suggests that large area of reforestation would be inevitable in future though per- sistent and large agricultural demand in coming decades even more. And local reforestation at slope farmland with ecological vulner- ability should be imperative at present to avoid severer damage. At the same time, from the perspective of Land Change Science, the results demonstrate that the research on land use change in the agro-forestry ecotone is typical and critical, particularly those dealing with the analysis of spatial and temporal characteristics and the simulation of climate, hydrology, and other environmental effects.展开更多
The role of forests is being actively considered under the agenda of REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus) aimed at reducing emissions related to changes in forest cover and fore...The role of forests is being actively considered under the agenda of REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus) aimed at reducing emissions related to changes in forest cover and forest quality. Forests in general have undergone negative changes in the past in the form of deforestation and degradation, while in some countries positive changes are reported in the form of conservation, sustainable management of forests and enhancement of carbon stock. The present study in the Kashmir Himalayan forests is an effort to assess historical forest cover changes that took place from 1980 to 2009 and to predict the same for 2030 on the basis of past trend using geospatial modeling approach. Landsat data (Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+)) was used for the years 1980, 199o and (2001, 2009) respectively and change detection analysis between the dates was performed. The maps generated were validated through ground truthing. The study area (3375.62 km^2) from 1980-2009 has uffered deforestation and forest degradation of about 126 km^2 and 239.02 km^2 respectively which can be claimed under negative options of REDD+, while as the area that experienced no change (1514 km^2) can be claimed under conservation. A small area (23.31 km^2) observed as positive change can be claimed under positive options. The projected estimates of forest cover for 2030 showed increased deforestation and forest degradation on the basis of trend analysis using Cellular Automata (CA) Markov modeling. Despite the fact that country as a whole has registered a net positive change in the past few decades, but there are regions like Kashmir region of western Himalaya which have constantly undergoing deforestation as well as degradation in the past few decades.展开更多
This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), curr...This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), currently affected by substantial changes in land use and deforestation. A landform map was produced, in addition to seven attribute maps - altimetry, drainage density, slope, relief energy, potential erosion, geology and tectonics - which were considered as factors for determining landform instability through Multi-criteria Evaluation Analysis. Likewise, the direction and rhythm of land-use dynamics were analyzed in four dates - between 1976 and 2000 - and cross tabulations were made between them, in order to analyze the trends and processes of land-use dynamics. Afterwards, the databases obtained were cross tabulated with the landform variables to derive areas, percentages and correlation indices. In the study area, high-instability landforms are associated with most ancient volcanic and sedimentary landforms, where high altitude, drainage density, slope and potential to develop gravitational and fluvial processes are the major factors favouring a land-use pattern, dominated by the conservation of extensive forest land, abandonment of human land use and regeneration of disturbed areas. In contrast, low-instability landforms correspond to alluvial plains and lava hills covered by pyroclasts, where low potential erosion to develop fluvial processes, added to water and soil availability and accessibility, have favoured a land-use pattern dominated by the expansion of agroforestry plantations and human settlements, showing a marked trend towards either intensification or permanence of the current land use and with little abandonment and regeneration.展开更多
基金Under the auspices of Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences (No.XDA05090310)
文摘The northeastern China, the United States, and the western Europe are important agricultural regions both on the global and regional scales. The westem Europe has a longer history of agricultural land development than the eastem United States. These two regions have changed from the deforestation and reclamation phase in the past to the current land abandonment and reforestation phase. Compared with the two regions, large-scale land exploitation has only been practiced in the northeastern China during the last century. After a short high-intensity deforestation and reclamation period, agricultural and forest lands are basically in a dynamic steady state. By comparing domestic and international agro-forestry development and considering the ecological environment and socio-economic bene- fits that can be derived from agro-forestry, this paper suggests that large area of reforestation would be inevitable in future though per- sistent and large agricultural demand in coming decades even more. And local reforestation at slope farmland with ecological vulner- ability should be imperative at present to avoid severer damage. At the same time, from the perspective of Land Change Science, the results demonstrate that the research on land use change in the agro-forestry ecotone is typical and critical, particularly those dealing with the analysis of spatial and temporal characteristics and the simulation of climate, hydrology, and other environmental effects.
文摘The role of forests is being actively considered under the agenda of REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus) aimed at reducing emissions related to changes in forest cover and forest quality. Forests in general have undergone negative changes in the past in the form of deforestation and degradation, while in some countries positive changes are reported in the form of conservation, sustainable management of forests and enhancement of carbon stock. The present study in the Kashmir Himalayan forests is an effort to assess historical forest cover changes that took place from 1980 to 2009 and to predict the same for 2030 on the basis of past trend using geospatial modeling approach. Landsat data (Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+)) was used for the years 1980, 199o and (2001, 2009) respectively and change detection analysis between the dates was performed. The maps generated were validated through ground truthing. The study area (3375.62 km^2) from 1980-2009 has uffered deforestation and forest degradation of about 126 km^2 and 239.02 km^2 respectively which can be claimed under negative options of REDD+, while as the area that experienced no change (1514 km^2) can be claimed under conservation. A small area (23.31 km^2) observed as positive change can be claimed under positive options. The projected estimates of forest cover for 2030 showed increased deforestation and forest degradation on the basis of trend analysis using Cellular Automata (CA) Markov modeling. Despite the fact that country as a whole has registered a net positive change in the past few decades, but there are regions like Kashmir region of western Himalaya which have constantly undergoing deforestation as well as degradation in the past few decades.
基金the National Autonomous University of Mexico, under project DGAPA-PAPIIT number IN-300911-3
文摘This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), currently affected by substantial changes in land use and deforestation. A landform map was produced, in addition to seven attribute maps - altimetry, drainage density, slope, relief energy, potential erosion, geology and tectonics - which were considered as factors for determining landform instability through Multi-criteria Evaluation Analysis. Likewise, the direction and rhythm of land-use dynamics were analyzed in four dates - between 1976 and 2000 - and cross tabulations were made between them, in order to analyze the trends and processes of land-use dynamics. Afterwards, the databases obtained were cross tabulated with the landform variables to derive areas, percentages and correlation indices. In the study area, high-instability landforms are associated with most ancient volcanic and sedimentary landforms, where high altitude, drainage density, slope and potential to develop gravitational and fluvial processes are the major factors favouring a land-use pattern, dominated by the conservation of extensive forest land, abandonment of human land use and regeneration of disturbed areas. In contrast, low-instability landforms correspond to alluvial plains and lava hills covered by pyroclasts, where low potential erosion to develop fluvial processes, added to water and soil availability and accessibility, have favoured a land-use pattern dominated by the expansion of agroforestry plantations and human settlements, showing a marked trend towards either intensification or permanence of the current land use and with little abandonment and regeneration.