The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated...The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated that the amounts of stemflow, throughfall, and interception were 37.39, 322.12 and 109.69 mm, accounting for 7.97%, 68.65% and 23.38% of the total rainfall, respectively. The rate of stemflow was higher in Jul. and Aug. than other months. The rate of throughfall dropped off from Jun. to Sept., however, rate of interception changed contrarily from 19.43% to 31.02% during the growing season. According to our analysis, the concentration of nutrient elements were arranged as Ca>Mg>N>K>Fe>P>Cu>Mn for rainfall, K>N>Mg>Ca>P>Fe>Mn>Cu for throughfall, and Mn>P>K>Cu>Fe>N>Mg>Ca for being leached through canopy. Nutrients concentration in stewflow and throughfall changed significantly when rainfall passed canopy, and concentration of all elements increased except for Ca and Mg.展开更多
Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depth...Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depths(10 cm,20 cm,40 cm and 60 cm) in forestland and vegetable plot in the Taihu Lake Basin,China were monitored and analyzed for characteristics of soil moisture variation and its response to several typical rainfall events.The following results were observed.First,great temporal variation of soil moisture was observed in the surface layer than in deeper layer in vegetable plot.In contrast,in forestland,soil moisture had similar variation pattern at different depths.Second,initial soil moisture was an important factor influencing the vertical movement of soil water during rainfall events.In vegetable plot,simultaneous response of soil moisture to rainfall was observed at 10-and 20-cm depths due to fast infiltration when initial soil was relatively dry.However,traditional downward response order occurred when initial soil was relatively wet.Third,critical soil horizon interface was an active zone of soil water accumulation and lateral movement.A less permeable W-B soil horizon interface(40-cm depth) in vegetable plot can create perched water table above it and elevate the soil water content at the corresponding depth.Fourth,the land cover was an effective control factor of soil moisture during small and moderate rainfall events.In the forestland,moderate and small rainfall events had tiny influences on soil moisture due to canopy and surface O horizon interception.Fifth,preferential flow and lateral subsurface interflow were important paths of soil water movement.During large and long duration rainfall events,lateral subsurface flow and preferential flow through surface crack or soil pipe occurred,which recharged the deep soil.However,in more concentrated large storm,surface crack or soil pipe connected by soil macropores was the main contributor to the occurrence of preferential flow.Findings of this study provide a theoretical foundation for sustainable water and fertilizer management and land use planning in the Taihu Lake Basin.展开更多
Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included l...Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.展开更多
基金This paper was supported by Chinese Academy of Science (KZCX2-406) Institute of Applied Ecology (SCXZD0101)+1 种基金 Chinese Academy of Science Shenyang and the Open Research Station of Changbai Mountain Forest Ecosystem.
文摘The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated that the amounts of stemflow, throughfall, and interception were 37.39, 322.12 and 109.69 mm, accounting for 7.97%, 68.65% and 23.38% of the total rainfall, respectively. The rate of stemflow was higher in Jul. and Aug. than other months. The rate of throughfall dropped off from Jun. to Sept., however, rate of interception changed contrarily from 19.43% to 31.02% during the growing season. According to our analysis, the concentration of nutrient elements were arranged as Ca>Mg>N>K>Fe>P>Cu>Mn for rainfall, K>N>Mg>Ca>P>Fe>Mn>Cu for throughfall, and Mn>P>K>Cu>Fe>N>Mg>Ca for being leached through canopy. Nutrients concentration in stewflow and throughfall changed significantly when rainfall passed canopy, and concentration of all elements increased except for Ca and Mg.
基金Under the auspices of National Natural Science Foundation of China(No.41271109,41030745)Key '135' Project of Chinese Academy of Sciences(No.NIGLAS2012135005)China Postdoctoral Science Foundation(No.2013M540470)
文摘Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depths(10 cm,20 cm,40 cm and 60 cm) in forestland and vegetable plot in the Taihu Lake Basin,China were monitored and analyzed for characteristics of soil moisture variation and its response to several typical rainfall events.The following results were observed.First,great temporal variation of soil moisture was observed in the surface layer than in deeper layer in vegetable plot.In contrast,in forestland,soil moisture had similar variation pattern at different depths.Second,initial soil moisture was an important factor influencing the vertical movement of soil water during rainfall events.In vegetable plot,simultaneous response of soil moisture to rainfall was observed at 10-and 20-cm depths due to fast infiltration when initial soil was relatively dry.However,traditional downward response order occurred when initial soil was relatively wet.Third,critical soil horizon interface was an active zone of soil water accumulation and lateral movement.A less permeable W-B soil horizon interface(40-cm depth) in vegetable plot can create perched water table above it and elevate the soil water content at the corresponding depth.Fourth,the land cover was an effective control factor of soil moisture during small and moderate rainfall events.In the forestland,moderate and small rainfall events had tiny influences on soil moisture due to canopy and surface O horizon interception.Fifth,preferential flow and lateral subsurface interflow were important paths of soil water movement.During large and long duration rainfall events,lateral subsurface flow and preferential flow through surface crack or soil pipe occurred,which recharged the deep soil.However,in more concentrated large storm,surface crack or soil pipe connected by soil macropores was the main contributor to the occurrence of preferential flow.Findings of this study provide a theoretical foundation for sustainable water and fertilizer management and land use planning in the Taihu Lake Basin.
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Institute of Soil Science, Chinese Academy of Sciences.
文摘Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.