-
题名哥德尔不完全性定理的推广形式及其哲学影响
- 1
-
-
作者
赵晓玉
-
机构
中国人民大学哲学院
-
出处
《逻辑学研究》
CSSCI
2020年第1期87-110,共24页
-
基金
中国人民大学2020年度“中央高校建设世界一流大学(学科)和特色发展引导专项资金”支持。
-
文摘
本文主要有五方面内容:一是将哥德尔不完全性定理涉及的一致性、语法完全性、ω-一致性、相对于N的可靠性、相对于N的完全性、可定义性等元理论性质推广成更一般的形式,并对其性质进行深入研究;二是简要回顾Salehi和Seraji所证推广的哥德尔第一不完全性定理,并就其关键定理给出更简洁易读的新证明,同时额外证明2组推广的哥德尔第一不完全性定理:任给n> 0,如果T是包含罗宾森算术的、Σn+1-可定义的(Πn-可定义的)、Πn+1-可靠的算术理论,那么T不是Πn+1-决定的;三是简要回顾Seraji和本文作者所证推广的哥德尔第二不完全性定理,并给出新证明,同时额外证明2组推广的哥德尔第二不完全性定理:任给n> 0,如果T是包含皮亚诺算术的、Σn+1-可定义的(Πn-可定义的)、Πn+1-可靠的算术理论,那么T不能证明自身Πn+1-可靠性;四是用两种方法再证明4组与一致性相关的推广的哥德尔第二不完全性定理:任给n> 0,如果T是包含皮亚诺算术的、一致的、Σn+1-可定义的(Πn-可定义的)、Σn+1-完全的(Πn-完全的)算术理论,那么T不能证明自身一致性,同时给出2组可证自身一致性的算术理论;五是基于推广的哥德尔不完全性定理,从对形式化方法局限的反驳、对反机械主义的支持、对数学家地位的维护等三个方面重新审视哥德尔不完全性定理所产生的哲学影响。
-
关键词
不完全性
非递归可枚举理论
一致性
Γ-一致性
Γ-可靠性
Γ-完全性
Γ-可定义性
哲学影响
-
分类号
B81
[哲学宗教—逻辑学]
-
-
题名一个代数恒等式及其证明
- 2
-
-
作者
初文昌
-
机构
中国科学院系统科学研究所
-
出处
《应用数学学报》
CSCD
北大核心
1990年第3期383-384,共2页
-
文摘
设S_n表示n个文字[n]={1,2,…,n}的对称群.作者最近在研究平面分拆(Plane partition)的枚举理论时,偶尔发现了下述代数恒等式.
-
关键词
代数恒等式
枚举理论
平面分拆
-
分类号
O157
[理学—基础数学]
-