The ultrastructure of the epidermis and flesh of apple ( Malus domestica Borkh cv. Red Fuji) fruit was systematically observed during the fruit development via transmission electron microscopy. The results showed t...The ultrastructure of the epidermis and flesh of apple ( Malus domestica Borkh cv. Red Fuji) fruit was systematically observed during the fruit development via transmission electron microscopy. The results showed that, in spite of the ultrastructural changes in many aspects of the developing fruit epidermal cells, it remained almost unchanged throughout the whole developmental process that the cytoplasm was filled with numerous endoplasmic reticula (ER). Most of these endoplasmic reticula were tube_like and rough_ER with enlarged cisterna from which many vesicles were produced. Some of the vesicles were shown to merge into vacuole. Some dynamic Golgi bodies were also found. All the ultrastructural characteristics showed that the epidermal cells have the features of excretory cells. The ultrastructure of the fruit flesh cells at the young fruit stage were shown to be metabolically active, characterized by the presence of numerous clustered plasmodesmata, cisterna enlarged_ and rough_ER filling the cytoplasm, plenty of vesicles and Golgi bodies, indicating their dynamic cellular transport function. Some giant_circular rough_ERs were found. All the ultrastructural features at this early developmental stage should be closely associated with the enlargement of the young fruit. At the rapid growing phase of the fruit the main changes were characterized by: the starch grain_filled amyloplasts, furcating of the single orifice of plasmodesmata, and the cytoplasm enrichment of both the Golgi body_formed vesicles and other vesicles. These features correspond well with those of a photoassimilate sink_cell. An ultrastructural degeneration phenomenon was observed at the fruit ripening stage, but the mitochondria and plasmalemma still remained intact, which might be related to the continuous development of fruit quality during the fruit ripening.展开更多
The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sites localized in cytosol were identified and characterized in the flesh of developing apple ( Malus pumila L. cv. Starkrimon) fruits. ABA bind...The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sites localized in cytosol were identified and characterized in the flesh of developing apple ( Malus pumila L. cv. Starkrimon) fruits. ABA binding activity was scarcely detectable in the microsomes and the cytosolic fraction isolated from the freshly harvested fruits via an in vitro ABA binding incubation of the subcellular fractions. If, however, instead that the subcellular fractions were in vitro incubated in H-3-ABA binding medium, the flesh tissue discs were directly in vivo incubated in H-3-ABA binding medium, a high ABA binding activity to the cytosolic fraction isolated from these tissue discs was detected. The in vivo ABA binding capacity of the cytosolic fraction was lost if the tissue discs had been pretreated with boiling water, indicating that the ABA binding needs a living state of tissue. The in vivo tissue-dependent binding sites were shown to possess protein nature with both active serine residua and thiol-group of cysteine residua in their functional binding center. The ABA binding of the in vivo tissue-dependent ABA binding sites to the cytosolic fraction was shown to be saturable, reversible, and of high affinity. The scatchard plotting gave evidence of two different classes of ABA binding proteins, one with a higher affinity ( Kd = 2.9 nmol/L) and the other with lower affinity ( Kd = 71.4 nmol/L). Phaseic acid, 2-trans-4-trans-ABA or cis-trans-(-)-ABA had substantially no affinity to the binding proteins, indicating their stereo-specificity to bind physiologically active ABA. The time course, pH- and temperature-dependence of the in vivo tissue-dependent binding proteins were determined. It is hypothesized that the detected ABA-binding proteins may be putative ABA-receptors that mediate ABA signals during fruit development.展开更多
文摘The ultrastructure of the epidermis and flesh of apple ( Malus domestica Borkh cv. Red Fuji) fruit was systematically observed during the fruit development via transmission electron microscopy. The results showed that, in spite of the ultrastructural changes in many aspects of the developing fruit epidermal cells, it remained almost unchanged throughout the whole developmental process that the cytoplasm was filled with numerous endoplasmic reticula (ER). Most of these endoplasmic reticula were tube_like and rough_ER with enlarged cisterna from which many vesicles were produced. Some of the vesicles were shown to merge into vacuole. Some dynamic Golgi bodies were also found. All the ultrastructural characteristics showed that the epidermal cells have the features of excretory cells. The ultrastructure of the fruit flesh cells at the young fruit stage were shown to be metabolically active, characterized by the presence of numerous clustered plasmodesmata, cisterna enlarged_ and rough_ER filling the cytoplasm, plenty of vesicles and Golgi bodies, indicating their dynamic cellular transport function. Some giant_circular rough_ERs were found. All the ultrastructural features at this early developmental stage should be closely associated with the enlargement of the young fruit. At the rapid growing phase of the fruit the main changes were characterized by: the starch grain_filled amyloplasts, furcating of the single orifice of plasmodesmata, and the cytoplasm enrichment of both the Golgi body_formed vesicles and other vesicles. These features correspond well with those of a photoassimilate sink_cell. An ultrastructural degeneration phenomenon was observed at the fruit ripening stage, but the mitochondria and plasmalemma still remained intact, which might be related to the continuous development of fruit quality during the fruit ripening.
文摘The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sites localized in cytosol were identified and characterized in the flesh of developing apple ( Malus pumila L. cv. Starkrimon) fruits. ABA binding activity was scarcely detectable in the microsomes and the cytosolic fraction isolated from the freshly harvested fruits via an in vitro ABA binding incubation of the subcellular fractions. If, however, instead that the subcellular fractions were in vitro incubated in H-3-ABA binding medium, the flesh tissue discs were directly in vivo incubated in H-3-ABA binding medium, a high ABA binding activity to the cytosolic fraction isolated from these tissue discs was detected. The in vivo ABA binding capacity of the cytosolic fraction was lost if the tissue discs had been pretreated with boiling water, indicating that the ABA binding needs a living state of tissue. The in vivo tissue-dependent binding sites were shown to possess protein nature with both active serine residua and thiol-group of cysteine residua in their functional binding center. The ABA binding of the in vivo tissue-dependent ABA binding sites to the cytosolic fraction was shown to be saturable, reversible, and of high affinity. The scatchard plotting gave evidence of two different classes of ABA binding proteins, one with a higher affinity ( Kd = 2.9 nmol/L) and the other with lower affinity ( Kd = 71.4 nmol/L). Phaseic acid, 2-trans-4-trans-ABA or cis-trans-(-)-ABA had substantially no affinity to the binding proteins, indicating their stereo-specificity to bind physiologically active ABA. The time course, pH- and temperature-dependence of the in vivo tissue-dependent binding proteins were determined. It is hypothesized that the detected ABA-binding proteins may be putative ABA-receptors that mediate ABA signals during fruit development.