ObjectiveThe study aimed to explore the factors regulating carotenoid accumulation in flesh color. MethodA loquat mutation (red-or orange-fleshed plant emerged a bud mutation of white-flesh in trunk) was used as mat...ObjectiveThe study aimed to explore the factors regulating carotenoid accumulation in flesh color. MethodA loquat mutation (red-or orange-fleshed plant emerged a bud mutation of white-flesh in trunk) was used as material; HPLC analysis of β-carotene content was conducted. ResultThe β-carotene concentration in the flesh of wild and mutant types was 60.9 and 4.6 μg/g fresh weight, respectively. According to the conserved regions of genes from rose family genome, carotenogenic gene fragments in wild and mutant types were obtained. No nucleotide variation of the carotenogenic gene fragments was observed between wild and mutant genome. Real-time quantitative polymerase chain reaction (Q-PCR) was compared and one carotenogenic gene, β-ring hydroxylase (HYB) were considerably suppressed in mature mutant loquat fruits compared with that in wild. The other six carotenogenic genes were also expressed but the expression patterns appeared to be not correlated with the amount of β-carotene concentration in wild loquat flesh. ConclusionThe mutant whitish loquat lacks the ability to synthesize β-carotene because of the transcriptional down-regulation of carotenogenic gene HYB.展开更多
[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as p...[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as parents to construct F1 orthogonal group. A total of 138 FI individuals were selected as experimental materi- als for construction of color around the stone gene pool (B1) and non-color around the stone gene pool (B2) by using bulked segregant analysis (BSA) method, molec- ular markers linked to the flesh color around the stone of P. persica (L.) Batsch were selected with SSR molecular marker technology. [Result] After selection with 256 pairs of SSR primers, three pairs of molecular markers linked to the gene con- trolling flesh color around the stone of P. persica (L.) Batsch were selected (UDP96- 003, ch04g09 and UDP97-402). In addition, genetic distances between the three molecular markers and the gene controlling flesh color around the stone of P. persi- ca (L.) Batsch were calculated, which were 16.7, 10.1 and 17.0 cM, respectively. [Conclusion] This study laid the foundation for further selection of co-dominant molecular markers with closer genetic distance.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201003073)Key Laboratory Program of Agriculture Ministry of China(2013JCYJ-004)+1 种基金Applied Basic Research Program of Chengdu City Science and Technology Bureau(11DXYB039NC)Youth Foundation of Sichuan Province(2011QNJJ-010)~~
文摘ObjectiveThe study aimed to explore the factors regulating carotenoid accumulation in flesh color. MethodA loquat mutation (red-or orange-fleshed plant emerged a bud mutation of white-flesh in trunk) was used as material; HPLC analysis of β-carotene content was conducted. ResultThe β-carotene concentration in the flesh of wild and mutant types was 60.9 and 4.6 μg/g fresh weight, respectively. According to the conserved regions of genes from rose family genome, carotenogenic gene fragments in wild and mutant types were obtained. No nucleotide variation of the carotenogenic gene fragments was observed between wild and mutant genome. Real-time quantitative polymerase chain reaction (Q-PCR) was compared and one carotenogenic gene, β-ring hydroxylase (HYB) were considerably suppressed in mature mutant loquat fruits compared with that in wild. The other six carotenogenic genes were also expressed but the expression patterns appeared to be not correlated with the amount of β-carotene concentration in wild loquat flesh. ConclusionThe mutant whitish loquat lacks the ability to synthesize β-carotene because of the transcriptional down-regulation of carotenogenic gene HYB.
基金Supported by Fund of Hebei Academy of Agriculture and Forestry Sciences(A06120203)~~
文摘[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as parents to construct F1 orthogonal group. A total of 138 FI individuals were selected as experimental materi- als for construction of color around the stone gene pool (B1) and non-color around the stone gene pool (B2) by using bulked segregant analysis (BSA) method, molec- ular markers linked to the flesh color around the stone of P. persica (L.) Batsch were selected with SSR molecular marker technology. [Result] After selection with 256 pairs of SSR primers, three pairs of molecular markers linked to the gene con- trolling flesh color around the stone of P. persica (L.) Batsch were selected (UDP96- 003, ch04g09 and UDP97-402). In addition, genetic distances between the three molecular markers and the gene controlling flesh color around the stone of P. persi- ca (L.) Batsch were calculated, which were 16.7, 10.1 and 17.0 cM, respectively. [Conclusion] This study laid the foundation for further selection of co-dominant molecular markers with closer genetic distance.