Mycobacterium tuberculosis(M.tb) and human immunodeficiency virus(HIV) co-infection has become a public health issue worldwide. Up to now, there have been many unresolved issues either in the clinical diagnosis and tr...Mycobacterium tuberculosis(M.tb) and human immunodeficiency virus(HIV) co-infection has become a public health issue worldwide. Up to now, there have been many unresolved issues either in the clinical diagnosis and treatment of M.tb/HIV coinfection or in the basic understanding of the mechanisms for the impairments to the immune system by interactions of these two pathogens. One important reason for these unsolved issues is the lack of appropriate animal models for the study of M.tb/HIV coinfection. This paper reviews the recent development of research on the animal models of M.tb/HIV co-infection, with a focus on the non-human primate models.展开更多
A study on nontuberculous mycobacteria (NTM) was carried out in wildlife-livestock interface of Katavi Rukwa ecosystem (KRE). 328 livestock tissues and 178 wild animals were cultured, wild animals were sampled opp...A study on nontuberculous mycobacteria (NTM) was carried out in wildlife-livestock interface of Katavi Rukwa ecosystem (KRE). 328 livestock tissues and 178 wild animals were cultured, wild animals were sampled opportunistically during professional hunting and game cropping operations in the KRE protected areas. The objective of the study was to generate data on epidemiology of NTM in the wildlife-livestock interface of the KRE. Methods used to identify the NTM were: culture and isolation, polymerase chain reaction, protein heat shock 65 kilodalton (hsp65) and sequencing. Mycobacteria were detected on 25.9% and 11.9% of livestock and wildlife tissue cultures, respectively. The most NTM isolated were M. kansasii (30%), M. gastri (30%), M. fortuitum (1%), M. intracellulare (4%), M. indicuspranii (4%), M. nonchromogenicum (6%) and M. lentiflavum (6%). Other NTM in smaller percentages were M. hibernae, M. engbaekii, M. septicum, M. arupense and 34.. godii. Due to rise of NTM infection in both human and animals, it is recommended that awareness and laboratory facilities be improved to curb the underreporting especially in TB-endemic countries. For species specific identification, a network of national and regional laboratories is promoted.展开更多
基金supported by grants from the National Natural Sciences Foundation of China(81201261,81301428)the National Science Foundation for Post-doctoral Scientists of China(2013M5317456)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX10004501-001-004)
文摘Mycobacterium tuberculosis(M.tb) and human immunodeficiency virus(HIV) co-infection has become a public health issue worldwide. Up to now, there have been many unresolved issues either in the clinical diagnosis and treatment of M.tb/HIV coinfection or in the basic understanding of the mechanisms for the impairments to the immune system by interactions of these two pathogens. One important reason for these unsolved issues is the lack of appropriate animal models for the study of M.tb/HIV coinfection. This paper reviews the recent development of research on the animal models of M.tb/HIV co-infection, with a focus on the non-human primate models.
文摘A study on nontuberculous mycobacteria (NTM) was carried out in wildlife-livestock interface of Katavi Rukwa ecosystem (KRE). 328 livestock tissues and 178 wild animals were cultured, wild animals were sampled opportunistically during professional hunting and game cropping operations in the KRE protected areas. The objective of the study was to generate data on epidemiology of NTM in the wildlife-livestock interface of the KRE. Methods used to identify the NTM were: culture and isolation, polymerase chain reaction, protein heat shock 65 kilodalton (hsp65) and sequencing. Mycobacteria were detected on 25.9% and 11.9% of livestock and wildlife tissue cultures, respectively. The most NTM isolated were M. kansasii (30%), M. gastri (30%), M. fortuitum (1%), M. intracellulare (4%), M. indicuspranii (4%), M. nonchromogenicum (6%) and M. lentiflavum (6%). Other NTM in smaller percentages were M. hibernae, M. engbaekii, M. septicum, M. arupense and 34.. godii. Due to rise of NTM infection in both human and animals, it is recommended that awareness and laboratory facilities be improved to curb the underreporting especially in TB-endemic countries. For species specific identification, a network of national and regional laboratories is promoted.