A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth m...A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries.展开更多
Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry...Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.展开更多
Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate ...Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate were investigated. Experimental results are presented, including primary and higher order dendrite arm spacings 21, 22, 23 and dendrite tip radius R of primary NisSn2 phase. Comparisons between the theoretical predictions and the experimental results show that, for the primary dendrites, 21=335.882v-0.21, which is in agreement with the Kurz-Fisher model; for the secondary dendrites, λ2=44.957v-0.277, which is consistent with the Bouchard-Kirkaldy model; for the tertiary dendrites, λ3=40.512v-0.274; for the dendrite tip radius, R=22.7v-0.36. The experimental results also show that the 21/22 changes greatly with increasing growth rate while the 21/23 has no significant change, indicating that tertiary dendrite arms have a more similar growth characteristics to primary dendrites compared with secondary dendrites. The λ1/R ranges from 2 to 2.3 with the increase of growth rate. Key words: Sn-Ni alloy; directional solidification; dendrite arm spacing; dendrite tip radius展开更多
When the shoot apical meristem of plants is damaged or removed,fecundity and/or plant growth may suffer(under-compensation),remain unaffected(compensation)or increase(overcompensation).The latter signifies a potential...When the shoot apical meristem of plants is damaged or removed,fecundity and/or plant growth may suffer(under-compensation),remain unaffected(compensation)or increase(overcompensation).The latter signifies a potential‘cost’of apical dominance.Using natural populations of 19 herbaceous angiosperm species with a conspicuously vertical,apically dominant growth form,we removed(clipped)the shoot apical meristem for replicate plants early in the growing season to test for a potential cost of apical dominance.Clipped and unclipped(control)plants had their near neighbours removed,and were harvested after flowering production had finished but before seed dispersal.Dry mass was measured separately for aboveground body size(shoots),leaves,seeds and fruits;and number of leaves,fruits and seeds per plant were counted.We predicted that:(i)our study species(because of their strong apically dominant growth form)would respond to shoot apical meristem removal with greater branching intensity,and thus overcompensation in terms of fecundity and/or biomass;and(ii)overcompensation is particularly enabled for species that produce smaller but more leaves,and hence with a larger bud bank of axillary meristems available for deployment in branching and/or fruit production.Widely variable compensatory capacities were recorded,and with no significant between-species relationship with leaf size or leafing intensity—thus indicating no generalized potential cost of apical dominance.Overall,the results point to species-specific treatment effects on meristem allocation patterns,and suggest importance for effects involving local variation in resource availability,and between-species variation in phenology,life history traits and susceptibility to herbivory.展开更多
基金Projects(11102164,11304243)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+1 种基金Project(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NWPU,China
文摘A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries.
基金Project(11102164)supported by the National Natural Science Foundation of ChinaProject(G9KY101502)supported by NPU Foundation for Fundamental Research,China
文摘Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.
基金Projects (51071062, 51271068, 51274077) supported by the National Natural Science Foundation of China Project (2011 -P03) supported by Open Fund of State Key Laboratory of Mold and Die Technology of Huazhong University of Science and Technology, China+1 种基金 Project (HIT. NSRIF. 2013002) supported by the Fundamental Research Funds for the Central Universities, China Project (2011CB610406) supported by the National Basic Research Program of China
文摘Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate were investigated. Experimental results are presented, including primary and higher order dendrite arm spacings 21, 22, 23 and dendrite tip radius R of primary NisSn2 phase. Comparisons between the theoretical predictions and the experimental results show that, for the primary dendrites, 21=335.882v-0.21, which is in agreement with the Kurz-Fisher model; for the secondary dendrites, λ2=44.957v-0.277, which is consistent with the Bouchard-Kirkaldy model; for the tertiary dendrites, λ3=40.512v-0.274; for the dendrite tip radius, R=22.7v-0.36. The experimental results also show that the 21/22 changes greatly with increasing growth rate while the 21/23 has no significant change, indicating that tertiary dendrite arms have a more similar growth characteristics to primary dendrites compared with secondary dendrites. The λ1/R ranges from 2 to 2.3 with the increase of growth rate. Key words: Sn-Ni alloy; directional solidification; dendrite arm spacing; dendrite tip radius
基金This work was supported by a Natural Sciences and Engineering Research Council of Canada research grant to L.W.A.
文摘When the shoot apical meristem of plants is damaged or removed,fecundity and/or plant growth may suffer(under-compensation),remain unaffected(compensation)or increase(overcompensation).The latter signifies a potential‘cost’of apical dominance.Using natural populations of 19 herbaceous angiosperm species with a conspicuously vertical,apically dominant growth form,we removed(clipped)the shoot apical meristem for replicate plants early in the growing season to test for a potential cost of apical dominance.Clipped and unclipped(control)plants had their near neighbours removed,and were harvested after flowering production had finished but before seed dispersal.Dry mass was measured separately for aboveground body size(shoots),leaves,seeds and fruits;and number of leaves,fruits and seeds per plant were counted.We predicted that:(i)our study species(because of their strong apically dominant growth form)would respond to shoot apical meristem removal with greater branching intensity,and thus overcompensation in terms of fecundity and/or biomass;and(ii)overcompensation is particularly enabled for species that produce smaller but more leaves,and hence with a larger bud bank of axillary meristems available for deployment in branching and/or fruit production.Widely variable compensatory capacities were recorded,and with no significant between-species relationship with leaf size or leafing intensity—thus indicating no generalized potential cost of apical dominance.Overall,the results point to species-specific treatment effects on meristem allocation patterns,and suggest importance for effects involving local variation in resource availability,and between-species variation in phenology,life history traits and susceptibility to herbivory.