Objective: To explore a new strategy to treat humeral shaft nonunion efficiently. Methods: In the light of mechanical characteristics of Nickel Titanium memory and the anatomic morphology of humeral shaft, we designed...Objective: To explore a new strategy to treat humeral shaft nonunion efficiently. Methods: In the light of mechanical characteristics of Nickel Titanium memory and the anatomic morphology of humeral shaft, we designed the swan like shape memory alloy connector (SMC). SMC was clinically applied in treating 55 cases of humeral shaft nonunion. Success rate of nonunion repair, reinterventions, complications, range of motion, and patient satisfaction were evaluated. Results: Fifty five humeral shaft nonunion patients were treated with autogenous bone grafting and SMC internal fixation. The average follow up period was 32 months. In 50 patients with complete follow up data, 49 were recovered from nonunion by lamellar bone healing. The excellent and good rate was 98%; one patient suffering from re fracture in a fall refused further treatment. Neither infection nor re fracture after SMC extraction or joint dysfunction was found in the whole group. Conclusion: SMC facilitates safe internal fixation and bone grafting; its memory biomechanic properties promote osteosynthesis, resulting in accelerated and high quality healing of humeral shaft nonunion. SMC internal fixation with bone grafting is creative, efficient and promising in treating humeral shaft nonunion.展开更多
Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot resea...Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot research field of biomedical engineering,provides a new direction for mandibular defect repair.As the basis and key part of tissue engineering,scaffolds have been widely and deeply studied in regards to the basic theory,as well as the principle of biomaterial,structure,design,and fabrication method.However,little research is targeted at tissue regeneration for clinic repair operations.Since mandibular bone has a special structure,rather than uniform and regular structure in existing studies,a methodology based on tissue engineering is proposed for mandibular defect repair in this paper.Key steps regarding scaffold digital design,such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail.By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping,the feasibility and effectiveness of the proposed methodology are properly verified.More works about mechanical and biological improvements need to be done to promote its clinical application in future.展开更多
基金SupportedbyShanghaiYouthScienceandTechnologyRisingStarPlan (No .0 3QD1 4 0 6 9)
文摘Objective: To explore a new strategy to treat humeral shaft nonunion efficiently. Methods: In the light of mechanical characteristics of Nickel Titanium memory and the anatomic morphology of humeral shaft, we designed the swan like shape memory alloy connector (SMC). SMC was clinically applied in treating 55 cases of humeral shaft nonunion. Success rate of nonunion repair, reinterventions, complications, range of motion, and patient satisfaction were evaluated. Results: Fifty five humeral shaft nonunion patients were treated with autogenous bone grafting and SMC internal fixation. The average follow up period was 32 months. In 50 patients with complete follow up data, 49 were recovered from nonunion by lamellar bone healing. The excellent and good rate was 98%; one patient suffering from re fracture in a fall refused further treatment. Neither infection nor re fracture after SMC extraction or joint dysfunction was found in the whole group. Conclusion: SMC facilitates safe internal fixation and bone grafting; its memory biomechanic properties promote osteosynthesis, resulting in accelerated and high quality healing of humeral shaft nonunion. SMC internal fixation with bone grafting is creative, efficient and promising in treating humeral shaft nonunion.
基金Project supported by the National Natural Science Foundation of China (No. 50905164)the Zhejiang Provincial Natural Science Foundation of China (No. Y2090835)
文摘Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot research field of biomedical engineering,provides a new direction for mandibular defect repair.As the basis and key part of tissue engineering,scaffolds have been widely and deeply studied in regards to the basic theory,as well as the principle of biomaterial,structure,design,and fabrication method.However,little research is targeted at tissue regeneration for clinic repair operations.Since mandibular bone has a special structure,rather than uniform and regular structure in existing studies,a methodology based on tissue engineering is proposed for mandibular defect repair in this paper.Key steps regarding scaffold digital design,such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail.By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping,the feasibility and effectiveness of the proposed methodology are properly verified.More works about mechanical and biological improvements need to be done to promote its clinical application in future.