Originated from the pore space segmentation modification of a reported metal-organic framework (MOF) (NOTT-125), a new porous MOF ZnX was obtained and characterized by single-crystal X-ray diffraction, elemental a...Originated from the pore space segmentation modification of a reported metal-organic framework (MOF) (NOTT-125), a new porous MOF ZnX was obtained and characterized by single-crystal X-ray diffraction, elemental analysis, X-ray powder diffraction and TGA. The ZnX exhibits remarkable selective CO2 adsorption property compared with that of the NOTT-125, which should be attributed to the enhanced gas-framework interactions induced by the fragmented pore space in ZnX.展开更多
基金supported by the National Natural Science Foundation of China(21531005,21421001,and 21290171)Ministry of Education Innovation Team of China(IRT13022)
文摘Originated from the pore space segmentation modification of a reported metal-organic framework (MOF) (NOTT-125), a new porous MOF ZnX was obtained and characterized by single-crystal X-ray diffraction, elemental analysis, X-ray powder diffraction and TGA. The ZnX exhibits remarkable selective CO2 adsorption property compared with that of the NOTT-125, which should be attributed to the enhanced gas-framework interactions induced by the fragmented pore space in ZnX.