Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class curren...Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.展开更多
A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road...A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.展开更多
Significant investments have been made regarding the construction of a great number of high-voltage overhead power lines of all voltage levels, and now the questions arise on where and how to direct the investments ne...Significant investments have been made regarding the construction of a great number of high-voltage overhead power lines of all voltage levels, and now the questions arise on where and how to direct the investments necessary for the maintenance of overhead power lines. To organise the process of maintenance of overhead power lines correctly, it is necessary to have the current information on the condition of particular components of a line. In this paper, special attention has been paid to the real condition of overhead power lines, with the aim of making the decision whether some of the following measures are necessary, and to what extent: the revitalisation for a certain number of years is perceived, the revitalisation up to five years and reconstruction of the overhead power line is performed, its restoration is performed or nothing is done. The approach to the perceiving of real condition of high-voltage overhead power lines is presented on a global block diagram. With the aim of setting out the list of priorities for revitalisation, the criteria have been defined with regards to the real condition of particular components of an overhead power line, as well as pursuant to the role and importance in an electric power system. The correctly defined criteria contribute to the solving of the problem of making a single list of priorities for the revitalisation of high-voltage overhead power lines. In that way, the recommendations are being given to the transmission companies, to achieve a higher reliability of an electric power system, with a minimum number of cancellations and a maximum extension of working life of all the components of overhead power lines. A correct maintenance of overhead power lines brings large financial savings to the owners of transmission companies, and that is the primary goal in a deregulated environment.展开更多
文摘Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.
基金Projects(51305117,51178158)supported by the National Natural Science Foundation of ChinaProject(20130111120031)supported by the Specialized Research Fund for the Doctoral Program of Higher Education+1 种基金Project(2013M530230)supported by the China Postdoctoral Science FoundationProjects(2012HGQC0015,2011HGBZ0945)supported by the Fundamental Research Funds for the Central Universities,China
文摘A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
文摘Significant investments have been made regarding the construction of a great number of high-voltage overhead power lines of all voltage levels, and now the questions arise on where and how to direct the investments necessary for the maintenance of overhead power lines. To organise the process of maintenance of overhead power lines correctly, it is necessary to have the current information on the condition of particular components of a line. In this paper, special attention has been paid to the real condition of overhead power lines, with the aim of making the decision whether some of the following measures are necessary, and to what extent: the revitalisation for a certain number of years is perceived, the revitalisation up to five years and reconstruction of the overhead power line is performed, its restoration is performed or nothing is done. The approach to the perceiving of real condition of high-voltage overhead power lines is presented on a global block diagram. With the aim of setting out the list of priorities for revitalisation, the criteria have been defined with regards to the real condition of particular components of an overhead power line, as well as pursuant to the role and importance in an electric power system. The correctly defined criteria contribute to the solving of the problem of making a single list of priorities for the revitalisation of high-voltage overhead power lines. In that way, the recommendations are being given to the transmission companies, to achieve a higher reliability of an electric power system, with a minimum number of cancellations and a maximum extension of working life of all the components of overhead power lines. A correct maintenance of overhead power lines brings large financial savings to the owners of transmission companies, and that is the primary goal in a deregulated environment.