Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes we...Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.展开更多
Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes we...Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.展开更多
While conventional wastewater treatments for urban effluents are fairly routine and have proved highly effective,industrial wastewater requires more complex and specific treatments.This paper provides a technological ...While conventional wastewater treatments for urban effluents are fairly routine and have proved highly effective,industrial wastewater requires more complex and specific treatments.This paper provides a technological strategy for removal of recalcitrant contaminants based on a hybrid treatment system.The model effluent containing a binary mixture of synthetic dyes is treated by a combination of a preliminary physicochemical stage followed by a biological stage based on ligninolytic enzymes produced by Phanerochaete chrysosporium.This proposal includes biosorption onto peat as pretreatment,which decreases the volume and concentration to be treated in the biological reactor,thereby obtaining a completely decolorized effluent.The treated wastewater can therefore be reused in the dyeing baths with the consequent saving of water resources.展开更多
Crystal structure of ethanol coordinated 1,8,15,22-tetra(2,2,4-trimethyl-3-pentoxy) phthalocyaninatocobalt (C64H80N8O4Co2C2H5OH, Mr = 1176.43) was determined by X-ray diffrac- tion methods. The crystal is of monoclini...Crystal structure of ethanol coordinated 1,8,15,22-tetra(2,2,4-trimethyl-3-pentoxy) phthalocyaninatocobalt (C64H80N8O4Co2C2H5OH, Mr = 1176.43) was determined by X-ray diffrac- tion methods. The crystal is of monoclinic, space group P21/c with a = 16.4294(4), b = 8.0560(2), c = 24.3654(7) ? ?= 98.3680(8)? Z = 2, V = 3190.6(1) ?, Dc = 1.225 g/cm3, F(000) = 1262, (MoK? = 0.326 mm-1, the final R = 0.0865 and wR = 0.2737 for 4787 observed reflections with I ≥ 2(I). The bulky branched alkyloxy substituents lead to a one structural isomer and space the phthalocyanine molecules where two ethanol molecules coordinate to the cobalt atom from two sides of each molecule.展开更多
To sensitize polyaniline with dyes by electrochemical polymerization, HClO 4 is employed as the dopant and oxidant, and the polyaniline with different sensitive properties is synthesized. The effect of sensitized emer...To sensitize polyaniline with dyes by electrochemical polymerization, HClO 4 is employed as the dopant and oxidant, and the polyaniline with different sensitive properties is synthesized. The effect of sensitized emeraldine salt on the absorption spectrum is discussed in details. The maximum conductivity of sensitized films reaches 1.22 S/cm, and investigation on dye sensitizing of the polymer reveals that C.I. Direct Blue 71, C.I. Direct Blue 84, C.I. Direct Black 19 and CuPc-(COOH) 4 may enhance the photoconductivity of polyaniline greatly.展开更多
The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electro...The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.展开更多
基金NationalNaturalScienceFoundationofChina (No .59772 0 1 9)
文摘Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.
基金NationalNaturalScienceFoundationofChina (No .59772 0 1 9)
文摘Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.
基金Supported by the Proyecto Fondecyt (1040089,1090098)
文摘While conventional wastewater treatments for urban effluents are fairly routine and have proved highly effective,industrial wastewater requires more complex and specific treatments.This paper provides a technological strategy for removal of recalcitrant contaminants based on a hybrid treatment system.The model effluent containing a binary mixture of synthetic dyes is treated by a combination of a preliminary physicochemical stage followed by a biological stage based on ligninolytic enzymes produced by Phanerochaete chrysosporium.This proposal includes biosorption onto peat as pretreatment,which decreases the volume and concentration to be treated in the biological reactor,thereby obtaining a completely decolorized effluent.The treated wastewater can therefore be reused in the dyeing baths with the consequent saving of water resources.
基金Supported by the Science Foundation of Fujian province and the Test Foundation of Universities of Fujian province
文摘Crystal structure of ethanol coordinated 1,8,15,22-tetra(2,2,4-trimethyl-3-pentoxy) phthalocyaninatocobalt (C64H80N8O4Co2C2H5OH, Mr = 1176.43) was determined by X-ray diffrac- tion methods. The crystal is of monoclinic, space group P21/c with a = 16.4294(4), b = 8.0560(2), c = 24.3654(7) ? ?= 98.3680(8)? Z = 2, V = 3190.6(1) ?, Dc = 1.225 g/cm3, F(000) = 1262, (MoK? = 0.326 mm-1, the final R = 0.0865 and wR = 0.2737 for 4787 observed reflections with I ≥ 2(I). The bulky branched alkyloxy substituents lead to a one structural isomer and space the phthalocyanine molecules where two ethanol molecules coordinate to the cobalt atom from two sides of each molecule.
文摘To sensitize polyaniline with dyes by electrochemical polymerization, HClO 4 is employed as the dopant and oxidant, and the polyaniline with different sensitive properties is synthesized. The effect of sensitized emeraldine salt on the absorption spectrum is discussed in details. The maximum conductivity of sensitized films reaches 1.22 S/cm, and investigation on dye sensitizing of the polymer reveals that C.I. Direct Blue 71, C.I. Direct Blue 84, C.I. Direct Black 19 and CuPc-(COOH) 4 may enhance the photoconductivity of polyaniline greatly.
基金supported by the National Science Fund for Distinguished Young Scholars(21425729)from the National Natural Science Foundation of Chinathe National Special S&T Project on Water Pollution Control and Treatment(2017ZX07107002)+1 种基金China Postdoctoral Science Foundation(2018M640209)the Tianjin Science and Technology Support Key Projects(18YFZCSF00500)~~
文摘The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.