We investigated the photocatalytic degradation of dye wastewater by using titanium dioxide (TiO2) coated on a coal cinder. The coal cinder was used as the carrier, with a thin film of TiO2 coated on it by using the ...We investigated the photocatalytic degradation of dye wastewater by using titanium dioxide (TiO2) coated on a coal cinder. The coal cinder was used as the carrier, with a thin film of TiO2 coated on it by using the sol-gel method. Using the Congo red as the model pollutant for dye wastewater, we studied the decolorization efficiency, and effects of TiO2 film thickness and roasting temperature on the efficiency. We also evaluated the recycling and regeneration of the immobilized TiO2 (TiO2/cinder). Results show that the decolorization rate of Congo red solution was more than 98% after 2.h treatment when we used TiO2/cinder calcined at 500 ℃ for 2 h and coated four times as the photocatalyst. At the same time, the TiO2/cinder remained high catalytic activity after being reused and regenerated for many times.展开更多
基金Funded by the Youth Fund Project of Yibin University (No. QJ05-28)
文摘We investigated the photocatalytic degradation of dye wastewater by using titanium dioxide (TiO2) coated on a coal cinder. The coal cinder was used as the carrier, with a thin film of TiO2 coated on it by using the sol-gel method. Using the Congo red as the model pollutant for dye wastewater, we studied the decolorization efficiency, and effects of TiO2 film thickness and roasting temperature on the efficiency. We also evaluated the recycling and regeneration of the immobilized TiO2 (TiO2/cinder). Results show that the decolorization rate of Congo red solution was more than 98% after 2.h treatment when we used TiO2/cinder calcined at 500 ℃ for 2 h and coated four times as the photocatalyst. At the same time, the TiO2/cinder remained high catalytic activity after being reused and regenerated for many times.