While conventional wastewater treatments for urban effluents are fairly routine and have proved highly effective,industrial wastewater requires more complex and specific treatments.This paper provides a technological ...While conventional wastewater treatments for urban effluents are fairly routine and have proved highly effective,industrial wastewater requires more complex and specific treatments.This paper provides a technological strategy for removal of recalcitrant contaminants based on a hybrid treatment system.The model effluent containing a binary mixture of synthetic dyes is treated by a combination of a preliminary physicochemical stage followed by a biological stage based on ligninolytic enzymes produced by Phanerochaete chrysosporium.This proposal includes biosorption onto peat as pretreatment,which decreases the volume and concentration to be treated in the biological reactor,thereby obtaining a completely decolorized effluent.The treated wastewater can therefore be reused in the dyeing baths with the consequent saving of water resources.展开更多
To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source...To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source and electron donor. Based on the 16S rRNA sequence analysis, the bacterium strain was Gram-negative and identified as Pseudomonas sp. Q1 according to its morphology and physiochemical properties. The strain was inoculated into a double-chambered MFC using various quinoline concentrations (0, 50, 75, 86, 100, 150, 200 and 300 mg L-1 ) combining with 300 mg L-1 glucose as the fuel. Results showed that electricity was generated from the MFC, in which quinoline was degraded simultaneously. The values of Coulombic efficiency (CE) increased with the increase of quinoline concentrations from 0 to 100 mg L-1 then decreased with the increase of quinoline concentration from 100 to 300 mg L-1 , and the maximum CE 36.7% was obtained at the quinoline concentration of 100 mg L-1 . The cyclic voltammetry analysis suggested that the mechanism of electron transfer was through excreting mediators produced by the strain Q1. The MFC should be a potential method for the treatment of quinoline-contaminated water and soil.展开更多
基金Supported by the Proyecto Fondecyt (1040089,1090098)
文摘While conventional wastewater treatments for urban effluents are fairly routine and have proved highly effective,industrial wastewater requires more complex and specific treatments.This paper provides a technological strategy for removal of recalcitrant contaminants based on a hybrid treatment system.The model effluent containing a binary mixture of synthetic dyes is treated by a combination of a preliminary physicochemical stage followed by a biological stage based on ligninolytic enzymes produced by Phanerochaete chrysosporium.This proposal includes biosorption onto peat as pretreatment,which decreases the volume and concentration to be treated in the biological reactor,thereby obtaining a completely decolorized effluent.The treated wastewater can therefore be reused in the dyeing baths with the consequent saving of water resources.
基金Supported by the National Natural Science Foundation of China (Nos. 51039007 and 51179212)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control of China (No. 10K04ESPCT)+2 种基金the Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China (No. 2011K0001)the Guangdong Provincial Program of Production, Teaching and Research (No. 2009B090300324)the Major Projects of Special National Science and Technology of Water (No. 2009ZX07528-001)
文摘To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source and electron donor. Based on the 16S rRNA sequence analysis, the bacterium strain was Gram-negative and identified as Pseudomonas sp. Q1 according to its morphology and physiochemical properties. The strain was inoculated into a double-chambered MFC using various quinoline concentrations (0, 50, 75, 86, 100, 150, 200 and 300 mg L-1 ) combining with 300 mg L-1 glucose as the fuel. Results showed that electricity was generated from the MFC, in which quinoline was degraded simultaneously. The values of Coulombic efficiency (CE) increased with the increase of quinoline concentrations from 0 to 100 mg L-1 then decreased with the increase of quinoline concentration from 100 to 300 mg L-1 , and the maximum CE 36.7% was obtained at the quinoline concentration of 100 mg L-1 . The cyclic voltammetry analysis suggested that the mechanism of electron transfer was through excreting mediators produced by the strain Q1. The MFC should be a potential method for the treatment of quinoline-contaminated water and soil.