期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
一个具暂时免疫且总人数可变的传染病动力学模型 被引量:14
1
作者 陈军杰 潘国卫 《生物数学学报》 CSCD 2003年第4期401-405,共5页
建立了一个具常恢复率和接触率依赖于总人数的SIRS传染病动力学模型,讨论了系统平衡点的存在性和稳定性,对双线性传染率的特殊情形,给出了传染病平衡点的全局稳定性结论,推广和改进了已有的相应结果.
关键词 染病模型 染病平衡点 全局稳定性 阀值
下载PDF
一类具有常数迁入且总人口在变化的SIRI传染病模型的稳定性 被引量:8
2
作者 陈军杰 《生物数学学报》 CSCD 2004年第3期310-316,共7页
讨论一类具有常数迁入率,染病类有病死且有效接触率依赖于总人数的SIRI传染病模型.给出了基本再生数σ的表达式.如果σ≤1,则疾病消除平衡点是全局稳定的;如果σ>1,则存在唯一的传染病平衡点且是局部渐近稳定的.对具有双线性传染率... 讨论一类具有常数迁入率,染病类有病死且有效接触率依赖于总人数的SIRI传染病模型.给出了基本再生数σ的表达式.如果σ≤1,则疾病消除平衡点是全局稳定的;如果σ>1,则存在唯一的传染病平衡点且是局部渐近稳定的.对具有双线性传染率和标准传染率的相应模型,进一步证明了当σ>1时传染病平衡点的全局稳定性. 展开更多
关键词 染病模型 再生数 染病平衡点 全局稳定性
下载PDF
具可变种群总数的SIS传染病模型指数稳定性(英文)
3
作者 傅朝金 沈轶 郑绿洲 《应用数学》 CSCD 北大核心 2007年第2期233-238,共6页
本文研究了一类具可变种群总数的SIS传染病模型,利用基于比较原理的新的分析技巧,获得了一些无病平衡点和传染病平衡点全局和局部指数稳定的充分条件,同时得到了平衡点指数收敛率与指数收敛区域的估计.
关键词 染病模型 无病平衡 染病平衡点 指数稳定性 收敛率
下载PDF
一类具有常数移民且带隔离项的传染病模型的分析 被引量:2
4
作者 余洋 胡志兴 《石家庄学院学报》 2006年第6期43-48,共6页
隔离是防治传染病的有效方法,在控制传染病的过程中有相当重要的意义.利用传染病动力学来建立传染病模型,可以比较准确地描述传染病流行时人群中各类人数的变化,再通过一些数学软件则能形象地反映其中的规律.因此从数学的角度来分析,在... 隔离是防治传染病的有效方法,在控制传染病的过程中有相当重要的意义.利用传染病动力学来建立传染病模型,可以比较准确地描述传染病流行时人群中各类人数的变化,再通过一些数学软件则能形象地反映其中的规律.因此从数学的角度来分析,在传染病发生过程中各因素对于疾病防治具有重要作用. 展开更多
关键词 染病模型 隔离 移民 染病平衡点 全局稳定性
下载PDF
1个带有饱和发生率的病毒模型动力学性质分析 被引量:1
5
作者 邢培旭 陈科委 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期31-34,共4页
研究了1个带有饱和发生率的病毒模型,讨论了该系统平衡点的存在性,从另外1个角度分析了该系统各平衡点的稳定性,通过数值模拟验证了结果的正确性.
关键词 无病平衡 染病平衡点 再生数 稳定性 数值模拟
下载PDF
一类SIR流行病数学模型稳定性的讨论
6
作者 曹晓军 《吉首大学学报(自然科学版)》 CAS 2011年第2期19-21,共3页
介绍了一类SIR流行病数学模型,并对其平衡点的局部和全局稳定性进行了讨论.
关键词 染病 染病平衡点 局部稳定性 全局稳定性
下载PDF
具有常恢复率的艾滋病梯度传染模型 被引量:13
7
作者 陈军杰 张南松 《应用数学学报》 CSCD 北大核心 2002年第3期538-546,共9页
本文建立了一个具有常恢复率的同质人群艾滋病梯度传染模型,其中的性接触数是人群变量的函数,讨论了平衡点的存在性和稳定性,推广和改进了一些相关的己有结果.
关键词 常恢复率 艾滋病梯度传染模型 阈值 染病平衡点 稳定性
原文传递
Global stability of an SEIQV epidemic model with general incidence rate 被引量:1
8
作者 Yu Yang Cuimei Zhang Xunyan Jiang 《International Journal of Biomathematics》 2015年第2期103-115,共13页
In this paper, a class of SEIQV epidemic model with general nonlinear incidence rate is investigated. By constructing Lyapunov function, it is shown that the disease-free equilibrium is globally asymptotically stable ... In this paper, a class of SEIQV epidemic model with general nonlinear incidence rate is investigated. By constructing Lyapunov function, it is shown that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number R0 ≤ 1. If R0 〉 1, we show that the endemic equilibrium is globally asymptotically stable by applying Li and Muldowney geometric approach. 展开更多
关键词 Epidemic model Lyapunov function geometric approach global stability.
原文传递
Analysis of a sex-structured HIV/AIDS model with the effect of screening of infectives 被引量:1
9
作者 S. Athithan Mini Ghosht 《International Journal of Biomathematics》 2014年第5期103-117,共15页
This paper presents a nonlinear sex-structured mathematical model to study the spread of HIV/AIDS by considering transmission of disease by heterosexual contact. The epidemic threshold and equilibria for the model are... This paper presents a nonlinear sex-structured mathematical model to study the spread of HIV/AIDS by considering transmission of disease by heterosexual contact. The epidemic threshold and equilibria for the model are determined, local stability and global stability of both the “Disease-Free Equilibrium” (DFE) and “Endemic Equilibrium” (EE) are discussed in detail. The DFE is shown to be locally and globally stable when the basic reproductive number R0 is less than unity. We also prove that the EE is locally and globally asymptotically stable under some conditions. Finally, numerical simulations are reported to support the analytical findings. 展开更多
关键词 HIV AIDS HETEROSEXUAL global stability simulation
原文传递
The asymptotic behavior and ergodicity of stochastically perturbed SVIR epidemic model 被引量:1
10
作者 Yanan Zhao Daqing Jiang 《International Journal of Biomathematics》 2016年第3期177-190,共14页
In this paper, we introduce stochasticity into an SIR epidemic model with vaccina- tion. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by t... In this paper, we introduce stochasticity into an SIR epidemic model with vaccina- tion. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by the method of stochastic Lyapunov functions, we carry out a detailed analysis on the dynamical behavior of the stochastic model regarding of the basic reproduction number R0. If R0 ≤ 1, the solution of the model is oscillating around a steady state, which is the disease-free equilibrium of the corresponding deterministic model. If R0 〉 1, there is a stationary distribution and the solution has the ergodic property, which means that the disease will prevail. 展开更多
关键词 Stochastic SVIR epidemic model disease-free equilibrium stationary distri-bution ERGODICITY stochastic Lyapunov functions.
原文传递
Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks
11
作者 Shouying Huang 《International Journal of Biomathematics》 2016年第1期165-189,共25页
In this paper, we study the spreading of infections on complex heterogeneous networks based on an SEIRS epidemic model with nonlinear infectivity. By mathematical analysis, the basic reproduction number R0 is obtained... In this paper, we study the spreading of infections on complex heterogeneous networks based on an SEIRS epidemic model with nonlinear infectivity. By mathematical analysis, the basic reproduction number R0 is obtained. When R0 is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out, while R0 is greater than one, the disease-free equilibrium becomes unstable and the disease is permanent, and in the meantime there exists a unique endemic equilibrium which is globally attrac- tive under certain conditions. Finally, the effects of various immunization schemes are studied. To verify our theoretical results, the corresponding numerical simulations are also included. 展开更多
关键词 Epidemic dynamics complex network nonlinear infectivity immunization.
原文传递
THE DYNAMICS OF A DISCRETE SEIT MODEL WITH AGE AND INFECTION AGE STRUCTURES
12
作者 HUI CAO YANNI XIAO YICANG ZHOU 《International Journal of Biomathematics》 2012年第3期61-76,共16页
Age and infection age have significant influence on the transmission of infectious dis- eases, such as HIV/AIDS and TB. A discrete SEIT model with age and infection age structures is formulated to investigate the dyna... Age and infection age have significant influence on the transmission of infectious dis- eases, such as HIV/AIDS and TB. A discrete SEIT model with age and infection age structures is formulated to investigate the dynamics of the disease spread. The basic reproduction number R0 is defined and used as the threshold parameter to character- ize the disease extinction or persistence. It is shown that the disease-free equilibrium is globally stable if R0 〈 1, and it is unstable if R0 〉 1. When R0 〉 1, there exists an endemic equilibrium, and the disease is uniformly persistent. The stability of the endemic equilibrium is investigated numerically. 展开更多
关键词 Discrete epidemic model infection age structure basic reproduction number persistence.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部