In this paper, a synthetic mathematical model of load flow for flexible AC transmission systems (FACTS) with unified power flow controller (UPFC) is presented based on the analysis of basic principle and operation sta...In this paper, a synthetic mathematical model of load flow for flexible AC transmission systems (FACTS) with unified power flow controller (UPFC) is presented based on the analysis of basic principle and operation state of UPFC. The model can use the fast P Q decoupled load flow method. Examples of test systems show that the proposed model and method have good convergence. An effective tool is provided by the load flow computer program to analyze the load flow and initial valve calculation of the dynamic state of FACTS.展开更多
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP...On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.展开更多
The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in ...The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in addition to regulate the system bus voltage. This paper presents performance analysis of Unified Power Flow Controller based on two axis theory. Based on this analysis, a new Artificial Neural Network (ANN) based controller has been proposed to improve the system performance. The controller rules are structured depending upon the relationship between series inserted voltage and the desired changes in real/reactive power flow in the power system. The effects of different controllers along with parameters of series transformer and transmission line have been investigated through developed control block model in SIMULINK tool box of MATLAB. The effectiveness of the proposed scheme is demonstrated by case studies.展开更多
Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnect...Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.展开更多
Due to rapidly development of high power semiconductor devices with fast control features have made possible to control the power flow more efficiently and effectively. The Flexible AC Transmission Systems (FACTS) i...Due to rapidly development of high power semiconductor devices with fast control features have made possible to control the power flow more efficiently and effectively. The Flexible AC Transmission Systems (FACTS) in this category introduces several innovative operating control devices. One of the recent devices is Advanced Unified Power Flow Controller (AUPFC) or multi-converter UPFC, which can control bus voltage and real and reactive power flows of more than one line or even a sub-network. This paper presents performance analysis of AUPFC based on d-q axis model theory. Based on the analysis, a new fuzzy logic rules based control algorithm has been developed in this paper which improves the system performance. The control rules are structured depending upon the relationship between series inserted voltages in multi-line and the desired changes of real and reactive power flows in the control network. The impacts of different controllers along with parameters of series connected transformers and transmission lines have been investigated through developed control block models in SIMULINK. The effectiveness of the proposed scheme is demonstrated by a case study.展开更多
Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in l...Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in line loading is neglected while formulating the problem for ATC (available transfer capability) calculations. This paper presents the determination of shunt reactive power compensation in the presence of FACTS (flexible AC transmission system) devices like: SSSC (static synchronous series compensator) and UPFC (unified power flow controller) for enhancement of power transfer capability of a power system incorporating the reactive power flows in ATC calculations. In doing so, redistribution of power flow takes place and therefore improves ATC of the system. Studies on a sample 5-bus power system model are carried out to illustrate the effect of shunt compensation along with line flow control.展开更多
文摘In this paper, a synthetic mathematical model of load flow for flexible AC transmission systems (FACTS) with unified power flow controller (UPFC) is presented based on the analysis of basic principle and operation state of UPFC. The model can use the fast P Q decoupled load flow method. Examples of test systems show that the proposed model and method have good convergence. An effective tool is provided by the load flow computer program to analyze the load flow and initial valve calculation of the dynamic state of FACTS.
文摘On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.
文摘The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in addition to regulate the system bus voltage. This paper presents performance analysis of Unified Power Flow Controller based on two axis theory. Based on this analysis, a new Artificial Neural Network (ANN) based controller has been proposed to improve the system performance. The controller rules are structured depending upon the relationship between series inserted voltage and the desired changes in real/reactive power flow in the power system. The effects of different controllers along with parameters of series transformer and transmission line have been investigated through developed control block model in SIMULINK tool box of MATLAB. The effectiveness of the proposed scheme is demonstrated by case studies.
文摘Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.
文摘Due to rapidly development of high power semiconductor devices with fast control features have made possible to control the power flow more efficiently and effectively. The Flexible AC Transmission Systems (FACTS) in this category introduces several innovative operating control devices. One of the recent devices is Advanced Unified Power Flow Controller (AUPFC) or multi-converter UPFC, which can control bus voltage and real and reactive power flows of more than one line or even a sub-network. This paper presents performance analysis of AUPFC based on d-q axis model theory. Based on the analysis, a new fuzzy logic rules based control algorithm has been developed in this paper which improves the system performance. The control rules are structured depending upon the relationship between series inserted voltages in multi-line and the desired changes of real and reactive power flows in the control network. The impacts of different controllers along with parameters of series connected transformers and transmission lines have been investigated through developed control block models in SIMULINK. The effectiveness of the proposed scheme is demonstrated by a case study.
文摘Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in line loading is neglected while formulating the problem for ATC (available transfer capability) calculations. This paper presents the determination of shunt reactive power compensation in the presence of FACTS (flexible AC transmission system) devices like: SSSC (static synchronous series compensator) and UPFC (unified power flow controller) for enhancement of power transfer capability of a power system incorporating the reactive power flows in ATC calculations. In doing so, redistribution of power flow takes place and therefore improves ATC of the system. Studies on a sample 5-bus power system model are carried out to illustrate the effect of shunt compensation along with line flow control.