采用反复蒸馏提纯技术和开放式动态蒸馏相结合的工艺,制备了高纯As-S玻璃,基本消除了玻璃在2.9、4和6.3μm处的杂质吸收。利用旋转法制备出壁厚均匀、表面质量优异的硫系玻璃套管。采用棒管法拉制出丝径50μm,芯径40μm具有芯包结构的...采用反复蒸馏提纯技术和开放式动态蒸馏相结合的工艺,制备了高纯As-S玻璃,基本消除了玻璃在2.9、4和6.3μm处的杂质吸收。利用旋转法制备出壁厚均匀、表面质量优异的硫系玻璃套管。采用棒管法拉制出丝径50μm,芯径40μm具有芯包结构的硫系玻璃光纤。拉制的As-S光纤机械性能和光学性能优异,光纤丝径波动小于1%,弯曲半径优于4 mm,中红外波段损耗基线小于0.5 d B/m。制备出像元呈正方形排列,出端规格64×9,入端规格192×3,用于线–面转换的红外传像束,像束断丝率为2.7%。利用该异型传像束成功实现了长线阵的红外推扫成像。展开更多
通过引入特征温度与硫系玻璃相匹配的高性能热塑性聚合物聚酰亚胺(PEI)作为光纤包层,结合复丝工艺制备了像素数为900的As2S3/PEI光纤传像束,表征了光纤的损耗、光纤束的断丝率、分辨率和串扰率。As2S3/PEI光纤在2~6μm波段传输性能优...通过引入特征温度与硫系玻璃相匹配的高性能热塑性聚合物聚酰亚胺(PEI)作为光纤包层,结合复丝工艺制备了像素数为900的As2S3/PEI光纤传像束,表征了光纤的损耗、光纤束的断丝率、分辨率和串扰率。As2S3/PEI光纤在2~6μm波段传输性能优异,背景损耗约为0.5 d B/m,在S-H杂质对应的4.0μm波长的峰值损耗为3.5 d B/m。单丝直径为80μm、像素数为900的光纤束的断丝率为1%,分辨率为7 line/mm,串扰率为1%,通过此传像束得到了清晰的电烙铁红外图像。而且,将PEI溶于二甲基乙酰胺(DMAC)后使光纤束表现出很好的柔性。采用这种类似"酸溶玻璃"的可溶于特定溶剂的热塑性聚合物,作为过渡介质,结合复丝工艺有望制备出柔性高分辨率硫系玻璃光纤传像束。展开更多
文摘采用反复蒸馏提纯技术和开放式动态蒸馏相结合的工艺,制备了高纯As-S玻璃,基本消除了玻璃在2.9、4和6.3μm处的杂质吸收。利用旋转法制备出壁厚均匀、表面质量优异的硫系玻璃套管。采用棒管法拉制出丝径50μm,芯径40μm具有芯包结构的硫系玻璃光纤。拉制的As-S光纤机械性能和光学性能优异,光纤丝径波动小于1%,弯曲半径优于4 mm,中红外波段损耗基线小于0.5 d B/m。制备出像元呈正方形排列,出端规格64×9,入端规格192×3,用于线–面转换的红外传像束,像束断丝率为2.7%。利用该异型传像束成功实现了长线阵的红外推扫成像。
文摘通过引入特征温度与硫系玻璃相匹配的高性能热塑性聚合物聚酰亚胺(PEI)作为光纤包层,结合复丝工艺制备了像素数为900的As2S3/PEI光纤传像束,表征了光纤的损耗、光纤束的断丝率、分辨率和串扰率。As2S3/PEI光纤在2~6μm波段传输性能优异,背景损耗约为0.5 d B/m,在S-H杂质对应的4.0μm波长的峰值损耗为3.5 d B/m。单丝直径为80μm、像素数为900的光纤束的断丝率为1%,分辨率为7 line/mm,串扰率为1%,通过此传像束得到了清晰的电烙铁红外图像。而且,将PEI溶于二甲基乙酰胺(DMAC)后使光纤束表现出很好的柔性。采用这种类似"酸溶玻璃"的可溶于特定溶剂的热塑性聚合物,作为过渡介质,结合复丝工艺有望制备出柔性高分辨率硫系玻璃光纤传像束。