Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources....Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources. Fibershaped batteries explored in recent years become a prospective candidate to satisfy these demands. With 1D architecture,the fiber-shaped batteries could be adapted to various deformations and integrated into soft textile and other devices.Numerous researches have been reported and achieved huge promotion. To give an overview of fiber-shaped batteries,we summarized the development of fiber-shaped batteries in this review, and discussed the structure and materials in fiber-shaped batteries. The flexibility of batteries with the potential application of the batteries was also exhibited and showed the future perspective. Finally, challenges in this field were discussed, hoping to reveal research direction towards further development of fiber-shaped batteries.展开更多
The development of pressure sensors with highly sensitivity, fast response and facile fabrication technique is desirable for wearable electronics. Here, we successfully fabricated a flexible transparent capacitive pre...The development of pressure sensors with highly sensitivity, fast response and facile fabrication technique is desirable for wearable electronics. Here, we successfully fabricated a flexible transparent capacitive pressure sensor based on patterned microstructured silver nanowires(AgNWs)/polydimethylsiloxane(PDMS) composite dielectrics. Compared with the pure PDMS dielectric layer with planar structures, the patterned microstructured sensor exhibits a higher sensitivity(0.831 kPa^-1, <0.5 kPa), a lower detection limit,good stability and durability. The enhanced sensing mechanism about the conductive filler content and the patterned microstructures has also been discussed. A 5×5 sensor array was then fabricated to be used as flexible and transparent wearable touch keyboards systems. The fabricated pressure sensor has great potential in the future electronic skin area.展开更多
Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalog...Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalogram(EEG).Thus,it is desirable to achieve a robust interface for brain-computer interface devices.Here,a kind of polydopamine methacrylamide-polyacrylamide(PDMA-PAAM)hydrogel is developed.To improve the adhesion,dopamine is introduced into the polyacrylamide hydrogel,through the amino and catechol groups of dopamine in an organic-inorganic interface to build a covalent and non-covalent interaction.A strong attachment and an effective modulus transition system can be formed between the metal electrodes and human skin,so that the peeling force between the PDMAPAAM hydrogel and the porcine skin can reach 22 N m^(-1).In addition,the stable conductivity and long-term operating life of the PDMA-PAAM hydrogel for more than 60 days at room temperature are achieved by adding sodium chloride(NaCl)and glycerol,respectively.The PDMA-PAAM hydrogel membrane fabricated in this work is integrated onto a flexible Au electrode applied in a brain-computer interface.In comparison,the collected EEG signal intensity and waveform are consistent with that of the commercial counterparts.And obviously,the flexible electrode with PDMA-PAAM hydrogel membrane is demonstrated to enable a more stable and userfriendly interface.展开更多
基金Project(2016YFB0901503) supported by National Key Research and Development Program of ChinaProjects(22075320,21875284) supported by the National Natureal Science Foundation of China。
文摘Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources. Fibershaped batteries explored in recent years become a prospective candidate to satisfy these demands. With 1D architecture,the fiber-shaped batteries could be adapted to various deformations and integrated into soft textile and other devices.Numerous researches have been reported and achieved huge promotion. To give an overview of fiber-shaped batteries,we summarized the development of fiber-shaped batteries in this review, and discussed the structure and materials in fiber-shaped batteries. The flexibility of batteries with the potential application of the batteries was also exhibited and showed the future perspective. Finally, challenges in this field were discussed, hoping to reveal research direction towards further development of fiber-shaped batteries.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China(NSFC,61625404)the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JWC004)the NSFC(61504136)
文摘The development of pressure sensors with highly sensitivity, fast response and facile fabrication technique is desirable for wearable electronics. Here, we successfully fabricated a flexible transparent capacitive pressure sensor based on patterned microstructured silver nanowires(AgNWs)/polydimethylsiloxane(PDMS) composite dielectrics. Compared with the pure PDMS dielectric layer with planar structures, the patterned microstructured sensor exhibits a higher sensitivity(0.831 kPa^-1, <0.5 kPa), a lower detection limit,good stability and durability. The enhanced sensing mechanism about the conductive filler content and the patterned microstructures has also been discussed. A 5×5 sensor array was then fabricated to be used as flexible and transparent wearable touch keyboards systems. The fabricated pressure sensor has great potential in the future electronic skin area.
基金supported by the National Natural Science Foundation of China(U20A6001,11921002,and 11902292)Zhejiang Province Key Research and Development Project(2021C01183,2020C05004,and 2021C05007-4)the Natural Science Foundation of Zhejiang Province of China(LQ19E030003)。
文摘Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalogram(EEG).Thus,it is desirable to achieve a robust interface for brain-computer interface devices.Here,a kind of polydopamine methacrylamide-polyacrylamide(PDMA-PAAM)hydrogel is developed.To improve the adhesion,dopamine is introduced into the polyacrylamide hydrogel,through the amino and catechol groups of dopamine in an organic-inorganic interface to build a covalent and non-covalent interaction.A strong attachment and an effective modulus transition system can be formed between the metal electrodes and human skin,so that the peeling force between the PDMAPAAM hydrogel and the porcine skin can reach 22 N m^(-1).In addition,the stable conductivity and long-term operating life of the PDMA-PAAM hydrogel for more than 60 days at room temperature are achieved by adding sodium chloride(NaCl)and glycerol,respectively.The PDMA-PAAM hydrogel membrane fabricated in this work is integrated onto a flexible Au electrode applied in a brain-computer interface.In comparison,the collected EEG signal intensity and waveform are consistent with that of the commercial counterparts.And obviously,the flexible electrode with PDMA-PAAM hydrogel membrane is demonstrated to enable a more stable and userfriendly interface.