Type synthesis of both rigid and compliant parallel mechanisms has become a hot issue in the field of mechanisms and robotics research in recent years. A unified approach to type synthesis of the two classes of mechan...Type synthesis of both rigid and compliant parallel mechanisms has become a hot issue in the field of mechanisms and robotics research in recent years. A unified approach to type synthesis of the two classes of mechanisms, however, has not been referred and investigated up to date. Based on the state-of-art analysis for several major type synthesis approaches related to rigid and compliant mechanisms, respectively, it proves feasible to establish a unified methodology for type synthesis of these two classes of mechanisms. That is a synthesis philosophy in terms of the hierarchy mapping between mathematic, physical, and mechanical building blocks in the framework of screw theory, as addressed in this paper. The key point of the proposed method lies in establishing the mapping among three different building blocks (i.e. geometric building block, kinematic or constraint building block, and mechanical building block). As a result, it makes the whole type synthesis process simple and visible. By using the proposed method, two examples are taken to verify the effectiveness for the type synthesis of both rigid and flexure mechanisms. The content of this paper may provide a theoretical frame for constructing a visualized algorithm or software about the unified type synthesis (or conceptual design) of both rigid and flexure parallel mechanisms.展开更多
Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added att...Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added attribute of flexibility or stretchability for these electrodes becomes increasingly important. However, mechanical requirements aside, transparent conductive electrodes must still retain high transparency and conductivity, with the metrics for these parameters being compared to the standard, indium tin oxide. In the search to replace indium tin oxide, two materials that have risen to the forefront are carbon nanotubes and silver nanowires due to their high transparency, conductivity, mechanical compliance, and ease of fabrication. This review highlights recent innovations made by our group in electrodes utilizing carbon nanotubes and silver nanowires, in addition to the use of these electrodes in discrete devices and integrated systems.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50875008, 50905005)
文摘Type synthesis of both rigid and compliant parallel mechanisms has become a hot issue in the field of mechanisms and robotics research in recent years. A unified approach to type synthesis of the two classes of mechanisms, however, has not been referred and investigated up to date. Based on the state-of-art analysis for several major type synthesis approaches related to rigid and compliant mechanisms, respectively, it proves feasible to establish a unified methodology for type synthesis of these two classes of mechanisms. That is a synthesis philosophy in terms of the hierarchy mapping between mathematic, physical, and mechanical building blocks in the framework of screw theory, as addressed in this paper. The key point of the proposed method lies in establishing the mapping among three different building blocks (i.e. geometric building block, kinematic or constraint building block, and mechanical building block). As a result, it makes the whole type synthesis process simple and visible. By using the proposed method, two examples are taken to verify the effectiveness for the type synthesis of both rigid and flexure mechanisms. The content of this paper may provide a theoretical frame for constructing a visualized algorithm or software about the unified type synthesis (or conceptual design) of both rigid and flexure parallel mechanisms.
基金supported in part by the Air Force Office of Scientific Research (FA9550-12-1-0074, Dr. Charles Lee)
文摘Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added attribute of flexibility or stretchability for these electrodes becomes increasingly important. However, mechanical requirements aside, transparent conductive electrodes must still retain high transparency and conductivity, with the metrics for these parameters being compared to the standard, indium tin oxide. In the search to replace indium tin oxide, two materials that have risen to the forefront are carbon nanotubes and silver nanowires due to their high transparency, conductivity, mechanical compliance, and ease of fabrication. This review highlights recent innovations made by our group in electrodes utilizing carbon nanotubes and silver nanowires, in addition to the use of these electrodes in discrete devices and integrated systems.