期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于灰度均值的自适应FAST角点检测优化算法
1
作者 刘艳 李一桐 《电光与控制》 CSCD 北大核心 2024年第2期65-71,91,共8页
光照不均、突变引起的灰度变化会影响图像特征检测效果。为此,设计一种基于灰度均值的自适应FAST-9-12角点检测算法。首先,利用特征点的延展性设计一种小面积双重检测模板,减少像素点与中心点的比较次数,提高区域正检率和检测速度;其次... 光照不均、突变引起的灰度变化会影响图像特征检测效果。为此,设计一种基于灰度均值的自适应FAST-9-12角点检测算法。首先,利用特征点的延展性设计一种小面积双重检测模板,减少像素点与中心点的比较次数,提高区域正检率和检测速度;其次,依据图像局部灰度均值,在每个像素点检测模板内自适应调整阈值,避免灰度变化影响检测效果;最后,根据柔性非极大值抑制的思想设计角点半径抑制原则,筛选鲁棒性更强的角点。在Inria遥感影像数据集上的实验结果表明,FAST-9-12角点检测速度比FAST-12-16,FAST-9-16两种模板提高22%左右,因自适应阈值的提取方式不易受光照影响,检测准确率分别提高4.16和3.11个百分点,实现了图像特征快速和精准检测。 展开更多
关键词 FAST角点检测 双重模板 自适应阈值 柔性极大抑制 角点半径抑制
下载PDF
基于YOLOv5的无人机视角小目标检测算法
2
作者 宋旭东 查可豪 《机电工程技术》 2024年第7期46-50,73,共6页
针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提... 针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。 展开更多
关键词 小目标检测 空间金字塔池化 注意力机制 柔性极大抑制 损失函数
下载PDF
融合CBAM的YOLOv4轻量化检测方法 被引量:2
3
作者 任丰仪 裴信彪 +1 位作者 乔正 白越 《小型微型计算机系统》 CSCD 北大核心 2023年第5期1008-1014,共7页
基于深度学习的目标检测算法应用于无人机视觉中,会极大提升无人机的场景理解能力,但模型参数量和计算量巨大,难以应用于移动端或嵌入式平台.因此本文提出了一种效果较好的轻量级实时检测模型,采用YOLOv4模型网络作为主要参考模型,使用M... 基于深度学习的目标检测算法应用于无人机视觉中,会极大提升无人机的场景理解能力,但模型参数量和计算量巨大,难以应用于移动端或嵌入式平台.因此本文提出了一种效果较好的轻量级实时检测模型,采用YOLOv4模型网络作为主要参考模型,使用MobileNet替换主干网络,并通过添加CBAM注意力机制以及Soft-NMS后处理策略来提高模型的准确性.选用PASCAL VOC数据集来测试所提出的轻量级YOLOv4模型,结果显示参数量只有原模型的一半,但速度FPS提升了26.48,精度mAP只下降了0.52%.将所提出的轻量化YOLOv4模型部署Nvidia Jetson TX2低功耗系统以及树莓派上,飞行试验显示在TX2上模型FPS达到了21.8,是原始的YOLOv4的4.74倍,将本算法部署到无人机装载的嵌入式平台上,能够对航拍视野中的车辆目标进行实时识别和定位. 展开更多
关键词 无人机图像 YOLOv4 MobileNet CBAM 柔性非极大抑制策略
下载PDF
多注意力机制的口罩检测网络 被引量:6
4
作者 余阿祥 李承润 +1 位作者 于书仪 李洪均 《南京师范大学学报(工程技术版)》 CAS 2021年第1期23-29,共7页
提出一种口罩佩戴检测模型,引入多注意力机制,提升了网络特征挖掘能力;利用柔性非极大抑制方法,消除多余目标检测框.在公共数据库上的仿真实验表明,该模型检测人脸口罩佩戴的平均精度达到93.81%,帧率达到11.8 fps,能有效地进行人脸口罩... 提出一种口罩佩戴检测模型,引入多注意力机制,提升了网络特征挖掘能力;利用柔性非极大抑制方法,消除多余目标检测框.在公共数据库上的仿真实验表明,该模型检测人脸口罩佩戴的平均精度达到93.81%,帧率达到11.8 fps,能有效地进行人脸口罩佩戴检测. 展开更多
关键词 口罩佩戴检测 多注意力机制 特征挖掘 柔性非极大抑制
下载PDF
基于轻量化卷积神经网络的疲劳驾驶检测 被引量:8
5
作者 程泽 林富生 +1 位作者 靳朝 周鼎贺 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第2期142-150,共9页
针对现有疲劳驾驶检测模型在判定准确性与实时性上的不平衡问题,设计了一种基于轻量化卷积神经网络EMLite-Yolo-V4的检测模型。通过使用MobileNet-V2作为目标检测网络Yolo-V4的主干特征提取网络,并且降低卷积通道系数alpha,使得网络参... 针对现有疲劳驾驶检测模型在判定准确性与实时性上的不平衡问题,设计了一种基于轻量化卷积神经网络EMLite-Yolo-V4的检测模型。通过使用MobileNet-V2作为目标检测网络Yolo-V4的主干特征提取网络,并且降低卷积通道系数alpha,使得网络参数量大幅度下降;改进柔性非极大值抑制使得目标框无需再同时考虑得分与重合度,进一步优化检测速率;加入轻量级特征金字塔FPN-tiny并且融合mosaic数据增强方法,以保证模型的检测精度。最后,利用EMLite-Yolo-V4提取面部疲劳特征,PERCLOS与单位时间打哈欠次数对疲劳特征进行状态判定并输出结果。实验表明:该检测模型的准确率达到97.39%,mAP指标为80.02%,单帧检测速度为20.83 ms,模型大小仅为9 MB,有效平衡了疲劳驾驶检测的准确性与实时性。 展开更多
关键词 疲劳驾驶检测 轻量化卷积神经网络 轻量级特征金字塔 柔性极大抑制 数据增强
下载PDF
面向复杂环境的输电线路关键设备缺陷检测方法 被引量:1
6
作者 颜丽 邓芳明 《无线电工程》 北大核心 2022年第12期2237-2244,共8页
针对小样本及复杂环境下输电线路关键设备缺陷检测难等问题,提出一种融合深度卷积神经网络和卡尔曼滤波的图像检测方法。采用MobileNet构建模型骨干网络,有效降低了计算成本;融合了柔性非极大值抑制算法以解决目标部件遮挡问题;将上下... 针对小样本及复杂环境下输电线路关键设备缺陷检测难等问题,提出一种融合深度卷积神经网络和卡尔曼滤波的图像检测方法。采用MobileNet构建模型骨干网络,有效降低了计算成本;融合了柔性非极大值抑制算法以解决目标部件遮挡问题;将上下文感知RoI池化层取代原始池化层,维护了小尺寸零部件的原始结构;通过卡尔曼滤波对检测结果进行修正,有效提高检测精度。实验结果表明,所提方法能够能在复杂输电线路设备中实现零部件的精确检测,mAP达到86.16%,每张图片检测时间仅需0.05 s。与相同条件下的其他检测算法相比,综合性能最佳。 展开更多
关键词 输电线路设备 深度学习 卡尔曼滤波 MobileNet 柔性极大抑制 上下文感知RoI池化
下载PDF
自动色阶与双向特征融合的水下目标检测算法 被引量:3
7
作者 杨婷 高武奇 +3 位作者 王鹏 李晓艳 吕志刚 邸若海 《激光与光电子学进展》 CSCD 北大核心 2023年第6期122-133,共12页
水下环境存在光线差、噪声大等复杂情况,导致传统水下目标检测方法检测精度较低、漏检率较高.针对上述问题,在现阶段通用的Faster R-CNN的基础上,提出一种自动色阶与双向特征融合的水下目标检测算法.首先,采用自动色阶对水下模糊图像进... 水下环境存在光线差、噪声大等复杂情况,导致传统水下目标检测方法检测精度较低、漏检率较高.针对上述问题,在现阶段通用的Faster R-CNN的基础上,提出一种自动色阶与双向特征融合的水下目标检测算法.首先,采用自动色阶对水下模糊图像进行增强处理;其次,采用PAFPN进行双向特征融合,以增强对浅层信息的表达能力;然后,在训练前后均引入柔性非极大值抑制(Soft-NMS)算法,来修正并生成候选目标区域;最后,采用FocalLoss函数,解决正负样本分配不均衡的问题.实验结果表明,所提算法在URPC2020数据集上的检测准确率可达59.7%,召回率可达70.5%,相比现阶段通用的Faster R-CNN算法,分别提高了 5.5个百分点和8.4个百分点,有效提高了水下目标检测的准确率. 展开更多
关键词 目标检测 图像增强 特征金字塔 柔性极大抑制 FocalLoss函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部