Lysosomes function as important organelles within cells and their movement associates with diverse biological events, hence the real-time tracking of lysosomal movement is of great significance. However, since most ly...Lysosomes function as important organelles within cells and their movement associates with diverse biological events, hence the real-time tracking of lysosomal movement is of great significance. However, since most ly so some fluorescent probes suffer from relatively unsatisfactory photo stability,tracking lysosomal movement in real-time remains challenging. Here,we report that a naphthalimide-based fluorescent compound,namely NIMS,is a quite promising probe for ly so some imaging. The visualizing mechanism lies in the selective accumulation of NIMS in lysosomes via a protonation reaction, followed by the fluorescence enhancement due to the interactions of NIMS with proteins. Owing to its high selectivity and good photo stability, NIMS was successfully applied to capture super-resolution fluorescence images of lysosomes. More importantly, real-time tracking of ly so some movement in a single living cell by NIMS was realized with a confocal laser scanning microscope. Surprisingly,even in normal culture conditions, around 2/3 of the captured lysosomes were observed to move within 5 min, indicative of the highly dynamic features of lysosomes. Thus, this probe may facilitate the understanding of the ly so some dynamics in physiologicalor pathological conditions.展开更多
基金supported by the National Key Basic Research Program of China(2013CB933903)National Natural Science Foundation of China(81621003,21372168,24672156,51173117,51573108)
文摘Lysosomes function as important organelles within cells and their movement associates with diverse biological events, hence the real-time tracking of lysosomal movement is of great significance. However, since most ly so some fluorescent probes suffer from relatively unsatisfactory photo stability,tracking lysosomal movement in real-time remains challenging. Here,we report that a naphthalimide-based fluorescent compound,namely NIMS,is a quite promising probe for ly so some imaging. The visualizing mechanism lies in the selective accumulation of NIMS in lysosomes via a protonation reaction, followed by the fluorescence enhancement due to the interactions of NIMS with proteins. Owing to its high selectivity and good photo stability, NIMS was successfully applied to capture super-resolution fluorescence images of lysosomes. More importantly, real-time tracking of ly so some movement in a single living cell by NIMS was realized with a confocal laser scanning microscope. Surprisingly,even in normal culture conditions, around 2/3 of the captured lysosomes were observed to move within 5 min, indicative of the highly dynamic features of lysosomes. Thus, this probe may facilitate the understanding of the ly so some dynamics in physiologicalor pathological conditions.