In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smo...In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.展开更多
Because of its landscape heterogeneity,Koshi Basin(KB) is home to one of the world's most abundant,diverse group of species.Habitat change evaluations for key protected species are very important for biodiversity p...Because of its landscape heterogeneity,Koshi Basin(KB) is home to one of the world's most abundant,diverse group of species.Habitat change evaluations for key protected species are very important for biodiversity protection in this region.Based on current and future world climate and land cover data,MaxE nt model was used to simulate potential habitat changes for key protected species.The results shows that the overall accuracy of the model is high(AUC 0.9),suggesting that the MaxE nt-derived distributions are a close approximation of real-world distribution probabilities.The valley around Chentang Town and Dram Town in China,and Lamabagar and the northern part of Landtang National Park in Nepal are the most important regions for the protection of the habitat in KB.The habitat area of Grus nigricollis,Panax pseudoginseng,and Presbytis entellus is expected to decrease in future climate and land cover scenarios.More focus should be placed on protecting forests and wetlands since these are the main habitats for these species.展开更多
The author considers the life-span of classical solutions to Cauchy problem for general first order quasilinear strictly hyperbolic systems in two independent variables with "slow" decay initial data. By con...The author considers the life-span of classical solutions to Cauchy problem for general first order quasilinear strictly hyperbolic systems in two independent variables with "slow" decay initial data. By constructing an example, first it is illustrated that the classical solution to this kind of Cauchy problem may blow up in a finite time, even if the system is weakly linearly degenerate. Then some lower bounds of the life-span of classical solutions are given in the case that the system is weakly linearly degenerate. These estimates imply that, when the system is weakly linearly degenerate, the classical solution exists almost globally in time. Finally, it is proved that Theorems 1.1-1.3 in [2] are still valid for this kind of initial data.展开更多
Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature...Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.展开更多
This paper deals with the standing wave for a Hamiltonian nonlinear wave equation which can be viewed as a representative of the class of equations of interest.On the one hand,by proving a compactness lemma and solvin...This paper deals with the standing wave for a Hamiltonian nonlinear wave equation which can be viewed as a representative of the class of equations of interest.On the one hand,by proving a compactness lemma and solving a variational problem,the existence of the standing wave with ground state for the aforementioned equation is proved.On the other hand,the authors derive the instability of the standing wave by applying the potential well argument,the concavity method and an invariant region under the solution flow of the Cauchy problem for the equation under study,and the invariance of the region aforementioned can be shown by introducing an auxiliary functional and a supplementary constrained variational problem.展开更多
文摘In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.
基金National Natural Science Foundation of China(41371120)Tibet Key Science and Technology Program(2015XZ01G72)The Australian Government-funded Koshi Basin Programme at the International Centre for Integrated Mountain Development(ICIMOD)
文摘Because of its landscape heterogeneity,Koshi Basin(KB) is home to one of the world's most abundant,diverse group of species.Habitat change evaluations for key protected species are very important for biodiversity protection in this region.Based on current and future world climate and land cover data,MaxE nt model was used to simulate potential habitat changes for key protected species.The results shows that the overall accuracy of the model is high(AUC 0.9),suggesting that the MaxE nt-derived distributions are a close approximation of real-world distribution probabilities.The valley around Chentang Town and Dram Town in China,and Lamabagar and the northern part of Landtang National Park in Nepal are the most important regions for the protection of the habitat in KB.The habitat area of Grus nigricollis,Panax pseudoginseng,and Presbytis entellus is expected to decrease in future climate and land cover scenarios.More focus should be placed on protecting forests and wetlands since these are the main habitats for these species.
基金Project supported by the National Natural Science Foundation of China
文摘The author considers the life-span of classical solutions to Cauchy problem for general first order quasilinear strictly hyperbolic systems in two independent variables with "slow" decay initial data. By constructing an example, first it is illustrated that the classical solution to this kind of Cauchy problem may blow up in a finite time, even if the system is weakly linearly degenerate. Then some lower bounds of the life-span of classical solutions are given in the case that the system is weakly linearly degenerate. These estimates imply that, when the system is weakly linearly degenerate, the classical solution exists almost globally in time. Finally, it is proved that Theorems 1.1-1.3 in [2] are still valid for this kind of initial data.
基金supported by the National Natural Science Foundation of China (Nos.60225003,60821091,10831007,60774025)KJCX3-SYW-S01
文摘Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.
基金supported by the National Natural Science Foundation of China (Nos.10801102, 0771151)the Sichuan Youth Sciences and Technology Foundation (No.07ZQ026-009) the China Postdoctoral Science Foundation
文摘This paper deals with the standing wave for a Hamiltonian nonlinear wave equation which can be viewed as a representative of the class of equations of interest.On the one hand,by proving a compactness lemma and solving a variational problem,the existence of the standing wave with ground state for the aforementioned equation is proved.On the other hand,the authors derive the instability of the standing wave by applying the potential well argument,the concavity method and an invariant region under the solution flow of the Cauchy problem for the equation under study,and the invariance of the region aforementioned can be shown by introducing an auxiliary functional and a supplementary constrained variational problem.