The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder is investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150 in the paper. Compared ...The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder is investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150 in the paper. Compared with the fixed cylinder, the vibration of cylinder leads to the shift of stagnation point, the shear layer strength and the inertial force, which affects the hydrodynamic forces on the cylinder. The effects of the instantaneous wake geometries and the corresponding cylinder motion on the hydrodynamic forces for one entire period of vortex shed are discussed in the drag-lift phase diagram. The Lorentz force for controlling the vibration cylinder is classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force decreases the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force has no effect on the lift.展开更多
Ballistic thermal transport properties in a cylindrical quantum structure modulated with double quantum dots(DQDs) are investigated.Results show that the transmission coefficients exhibit the irregular oscillation.Som...Ballistic thermal transport properties in a cylindrical quantum structure modulated with double quantum dots(DQDs) are investigated.Results show that the transmission coefficients exhibit the irregular oscillation.Some resonant transmission peaks and stop-frequency gaps can be observed,and the number and positions of these peaks and gaps are sensitive to the sizes of DQDs.With increasing the temperature,the thermal conductance undergoes a transition from the decrease to increase,and can be efficiently tuned by modulating the radius,length of DQDs as well as the interval between DQDs.In addition,at low temperatures,the enhancement of the thermal conductance can be also observed in this case.Some similarities and differences between the cylindrical and rectangular structures are identified.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11172140)
文摘The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder is investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150 in the paper. Compared with the fixed cylinder, the vibration of cylinder leads to the shift of stagnation point, the shear layer strength and the inertial force, which affects the hydrodynamic forces on the cylinder. The effects of the instantaneous wake geometries and the corresponding cylinder motion on the hydrodynamic forces for one entire period of vortex shed are discussed in the drag-lift phase diagram. The Lorentz force for controlling the vibration cylinder is classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force decreases the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force has no effect on the lift.
基金supported by the National Natural Science Foundation of China (Grant No.11204074)
文摘Ballistic thermal transport properties in a cylindrical quantum structure modulated with double quantum dots(DQDs) are investigated.Results show that the transmission coefficients exhibit the irregular oscillation.Some resonant transmission peaks and stop-frequency gaps can be observed,and the number and positions of these peaks and gaps are sensitive to the sizes of DQDs.With increasing the temperature,the thermal conductance undergoes a transition from the decrease to increase,and can be efficiently tuned by modulating the radius,length of DQDs as well as the interval between DQDs.In addition,at low temperatures,the enhancement of the thermal conductance can be also observed in this case.Some similarities and differences between the cylindrical and rectangular structures are identified.