In this work,the efficiency of an adsorption process,in which Moroccan diatomite(ND)is used as a low-cost adsorbent to remove Congo red(CR)dye from contaminated waters in batch and column system,was examined.The influ...In this work,the efficiency of an adsorption process,in which Moroccan diatomite(ND)is used as a low-cost adsorbent to remove Congo red(CR)dye from contaminated waters in batch and column system,was examined.The influence of experimental conditions(pH,adsorbent dose and temperature)on the adsorption of CR onto the ND adsorbent was studied.A study of the adsorption kinetics for CR revealed that a pseudo-second-order model provided the best fit to the experimental kinetic data,and the equilibrium data were well described by the Langmuir isotherm model with an adsorption capacity of 6.07 mg/g using 15 g/L of ND,pH=6,contact time 3 h and 25℃.On the other hand,the ND regeneration tests were investigated and showed that the desorption reaches at least 50%when using ethanol as eluent.In addition,the adsorption process in a continuous mode was studied.Breakthrough curves were properly represented by the Yoon—Nelson model.Hence,the adsorption capacity of 5.71 mg/g was reached using 0.114 g of adsorbent,CR concentration of 6 mg/L and a flow of 1 mL/min under 25℃.展开更多
This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial desig...This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.展开更多
We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotati...We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotation column. The chosen packing was a honeycomb structure with an aperture diameter of 80 mm, a web thickness of 0.80 mm, a film height of 1000 mm, packed into a 400 mm diameter space, which completely filled the vessel at optimal cost. The column consisted of a modular ring of single-hole hexagonal honeycomb tube packing made from atactic polyproplene (PP-R). The packing was tested in a cyclonic, static micro-bubble flotation column. Computational fluid dynamic modeling was used to analyze the flotation fluid in a honeycomb tube packed flotation column. Our results show that the fluid axial movement was maximized and that the transverse fluid velocities were zero in the vicinity of axial flow. Using the honeycomb tube packing for copper sulfide flotation we observed that the average concentration in the product was increased to 25.41%, from an average feed concentration of 0.729%, with an average recovery of 92.92%. The demands of on-site industrial production were met.展开更多
The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption i...The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption in a fixed-bed column packed with commercial active carbon is studied in laboratory.The adsorption column achieves high surfactin recovery(94%)by up-flow methanol elution at 25°C.The adsorption column is simulated with a complex one-dimensional plug flow dispersion model coupled with nonlinear adsorption equilibrium,based on the assumption that the adsorption of surfactin is monomolecular layer and no micelle is formed.The molecular diffusion coefficient of surfactin in water solution with electric neutrality is estimated to be 0.428×10 -5 cm 2 ·s -1 by molecular dynamics simulation.The model developed can describe the complex interplay of adsorption kinetics,fluid dynamics,and mass-transfer phenomena based on the assumption of no radial temperature and concentration gradients,and is of adequate precision.The work involved in this paper is valuable for the optimization of the production process of surfactin.展开更多
The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric...The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.展开更多
文摘In this work,the efficiency of an adsorption process,in which Moroccan diatomite(ND)is used as a low-cost adsorbent to remove Congo red(CR)dye from contaminated waters in batch and column system,was examined.The influence of experimental conditions(pH,adsorbent dose and temperature)on the adsorption of CR onto the ND adsorbent was studied.A study of the adsorption kinetics for CR revealed that a pseudo-second-order model provided the best fit to the experimental kinetic data,and the equilibrium data were well described by the Langmuir isotherm model with an adsorption capacity of 6.07 mg/g using 15 g/L of ND,pH=6,contact time 3 h and 25℃.On the other hand,the ND regeneration tests were investigated and showed that the desorption reaches at least 50%when using ethanol as eluent.In addition,the adsorption process in a continuous mode was studied.Breakthrough curves were properly represented by the Yoon—Nelson model.Hence,the adsorption capacity of 5.71 mg/g was reached using 0.114 g of adsorbent,CR concentration of 6 mg/L and a flow of 1 mL/min under 25℃.
基金the Tarbiat Modares University & Nuclear Science and Technology Research Institute for their financial support
文摘This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.
基金Project 2007AA05Z339 supported by the National High-Tech Research and Development Program of China
文摘We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotation column. The chosen packing was a honeycomb structure with an aperture diameter of 80 mm, a web thickness of 0.80 mm, a film height of 1000 mm, packed into a 400 mm diameter space, which completely filled the vessel at optimal cost. The column consisted of a modular ring of single-hole hexagonal honeycomb tube packing made from atactic polyproplene (PP-R). The packing was tested in a cyclonic, static micro-bubble flotation column. Computational fluid dynamic modeling was used to analyze the flotation fluid in a honeycomb tube packed flotation column. Our results show that the fluid axial movement was maximized and that the transverse fluid velocities were zero in the vicinity of axial flow. Using the honeycomb tube packing for copper sulfide flotation we observed that the average concentration in the product was increased to 25.41%, from an average feed concentration of 0.729%, with an average recovery of 92.92%. The demands of on-site industrial production were met.
文摘The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption in a fixed-bed column packed with commercial active carbon is studied in laboratory.The adsorption column achieves high surfactin recovery(94%)by up-flow methanol elution at 25°C.The adsorption column is simulated with a complex one-dimensional plug flow dispersion model coupled with nonlinear adsorption equilibrium,based on the assumption that the adsorption of surfactin is monomolecular layer and no micelle is formed.The molecular diffusion coefficient of surfactin in water solution with electric neutrality is estimated to be 0.428×10 -5 cm 2 ·s -1 by molecular dynamics simulation.The model developed can describe the complex interplay of adsorption kinetics,fluid dynamics,and mass-transfer phenomena based on the assumption of no radial temperature and concentration gradients,and is of adequate precision.The work involved in this paper is valuable for the optimization of the production process of surfactin.
基金supported by Sinopec Marine Forward-looking Projects (Grant No. YPH08101)
文摘The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.