In order to supply theoretical guidance to hydraulic transformer's design and application,the effect of the number of plungers in hydraulic transformer on its flow characteristic is analyzed,theoretical analysis a...In order to supply theoretical guidance to hydraulic transformer's design and application,the effect of the number of plungers in hydraulic transformer on its flow characteristic is analyzed,theoretical analysis and simulation are done on hydraulic transformer's flow characteristic when the number of plungers is different.Based on the working principle of swash plate piston hydraulic components,mathematical models of instantaneous flow and flow pulsation rate are built,and simulation study is done with MATLAB.As a result,the effect is found,and some conclusions worth referring to are obtained.展开更多
The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and...The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve plate transition region. In this study, a new design method for the transition region of valve plate based on the matching of flow area and reduction of transient reverse flow was proposed, and with which a valve plate was designed. Then, the impact of the flow ripple in the discharge line of an axial piston pump and the pressure overshoot and undershoot in the piston chamber on hydraulic and structural noise for axial piston pump is discussed. The noise reduction effect of the axial piston pump with this valve plate was analyzed by adopting a flow characteristic simulation model. Finally, the results showed that the application of this design method could contribute much to the reduction of the flow ripple and elimination of the pressure overshoot and undershoot. As a consequence, the method can be used in the design of a low-noise open circuit axial piston pump.展开更多
基金Supported by the National Natural Science Foundation of China(No.50875054)the Open Fund of State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University(No.GZKF-2008003)
文摘In order to supply theoretical guidance to hydraulic transformer's design and application,the effect of the number of plungers in hydraulic transformer on its flow characteristic is analyzed,theoretical analysis and simulation are done on hydraulic transformer's flow characteristic when the number of plungers is different.Based on the working principle of swash plate piston hydraulic components,mathematical models of instantaneous flow and flow pulsation rate are built,and simulation study is done with MATLAB.As a result,the effect is found,and some conclusions worth referring to are obtained.
基金the National Basic Research Program (973 Program) of China,the Science Fund for Creative Research Groups of the National Natural Science Foundation of China
文摘The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve plate transition region. In this study, a new design method for the transition region of valve plate based on the matching of flow area and reduction of transient reverse flow was proposed, and with which a valve plate was designed. Then, the impact of the flow ripple in the discharge line of an axial piston pump and the pressure overshoot and undershoot in the piston chamber on hydraulic and structural noise for axial piston pump is discussed. The noise reduction effect of the axial piston pump with this valve plate was analyzed by adopting a flow characteristic simulation model. Finally, the results showed that the application of this design method could contribute much to the reduction of the flow ripple and elimination of the pressure overshoot and undershoot. As a consequence, the method can be used in the design of a low-noise open circuit axial piston pump.