We present a novel mechanism,which is formed by periodically changing the radii of dielectric rods in the middle row of a photonic crystal, to control and stop light. Using the Bloch theory and coupled-mode theoryl th...We present a novel mechanism,which is formed by periodically changing the radii of dielectric rods in the middle row of a photonic crystal, to control and stop light. Using the Bloch theory and coupled-mode theoryl the dispersion characteristic of such a photonic crystal coupled cavity optical waveguide is obtained. We also theoretically demonstrate that the group velocity of a light pulse in this system can be modulated by dynamically changing the refractive index or radii of the selected dielectric rods, and the light stopping can be achieved.展开更多
基金supported by the National Natural Science Foundation of China(No.10874128)
文摘We present a novel mechanism,which is formed by periodically changing the radii of dielectric rods in the middle row of a photonic crystal, to control and stop light. Using the Bloch theory and coupled-mode theoryl the dispersion characteristic of such a photonic crystal coupled cavity optical waveguide is obtained. We also theoretically demonstrate that the group velocity of a light pulse in this system can be modulated by dynamically changing the refractive index or radii of the selected dielectric rods, and the light stopping can be achieved.