The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
A rational design evaluation procedure is investigated for the elastic overall buckling load carrying capacity of single layer cylindrical lattice shell roof structures. The nature of the imperfection sensitivity of t...A rational design evaluation procedure is investigated for the elastic overall buckling load carrying capacity of single layer cylindrical lattice shell roof structures. The nature of the imperfection sensitivity of these structures is for the first time reviewed in this paper. This allows the development of the reduced stiffness buckling analytical concept for the lattice shells based upon the introduction of a simple lower bound estimation equation through the use of the so-called continuum shell analogy theory. The linear and nonlinear buckling loads found from conventional finite element analyses are compared with the present estimations. Finally, the elastic-plastic load carrying capacity estimation method through the use of the present elastic lower bound criteria is also proposed.展开更多
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.
文摘A rational design evaluation procedure is investigated for the elastic overall buckling load carrying capacity of single layer cylindrical lattice shell roof structures. The nature of the imperfection sensitivity of these structures is for the first time reviewed in this paper. This allows the development of the reduced stiffness buckling analytical concept for the lattice shells based upon the introduction of a simple lower bound estimation equation through the use of the so-called continuum shell analogy theory. The linear and nonlinear buckling loads found from conventional finite element analyses are compared with the present estimations. Finally, the elastic-plastic load carrying capacity estimation method through the use of the present elastic lower bound criteria is also proposed.