Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and ...Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.展开更多
[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using r...[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using root elongation method,the effects of heavy metal Cu^2+,Pb^2+,Zn^2+ and their mixed solution on the adventitious roots growth of S.matsudana cuttings were studied.[Result]The adventitious roots growth of S.matsudana cuttings was obviously affected by different concentrations of heavy metals solution.Adventitious roots of S.matsudana cuttings could not grow while the concentration of Cu^2+ was higher than 15 mg/L,the mixture solution concentration was higher than 20 mg/L and Zn^2+ concentration was higher than 30 mg/L.When the solution concentration reached 40 mg/L,adventitious roots of S.matsudana cuttings could grow only in Pb^2+ treatment group.With the increasing of the solution concentration,the number of adventitious roots of S.matsudana cuttings gradually decreased.In 5 mg/L Zn^2+ treatment group,the number of adventitious roots of S.matsudana cuttings was the most,the longest root length and average root length were the longest and the rooting rate was the highest.[Conclusion]The tolerance of S.matsudana to Pb^2+ was strongest and its tolerance to Cu^2+ was the weakest.The tolerance order of S.matsudana to three kinds of heavy metals and their mixed solution was as following:Pb^2+〉Zn^2+〉Cu^2++Pb^2++Zn^2+〉Cu^2+.展开更多
基金This study was supported by National Natural Science Foundation of China (Grant No. 30130160) and the Quick Response of Basic Research Supporting Program (Grant No.2102)
文摘Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.
基金Supported by Natural Science Foundation of Anhui University(KJ2007B120)Doctor Foundation Projects of Anhui Agricultural University (WD2006-12)~~
文摘[Objective]The research aimed to discuss the tolerance of Salix matsudana to single or compound heavy metals and provide theoretical basis for renovating polluted soil by heavy metals with woody plants.[Method]Using root elongation method,the effects of heavy metal Cu^2+,Pb^2+,Zn^2+ and their mixed solution on the adventitious roots growth of S.matsudana cuttings were studied.[Result]The adventitious roots growth of S.matsudana cuttings was obviously affected by different concentrations of heavy metals solution.Adventitious roots of S.matsudana cuttings could not grow while the concentration of Cu^2+ was higher than 15 mg/L,the mixture solution concentration was higher than 20 mg/L and Zn^2+ concentration was higher than 30 mg/L.When the solution concentration reached 40 mg/L,adventitious roots of S.matsudana cuttings could grow only in Pb^2+ treatment group.With the increasing of the solution concentration,the number of adventitious roots of S.matsudana cuttings gradually decreased.In 5 mg/L Zn^2+ treatment group,the number of adventitious roots of S.matsudana cuttings was the most,the longest root length and average root length were the longest and the rooting rate was the highest.[Conclusion]The tolerance of S.matsudana to Pb^2+ was strongest and its tolerance to Cu^2+ was the weakest.The tolerance order of S.matsudana to three kinds of heavy metals and their mixed solution was as following:Pb^2+〉Zn^2+〉Cu^2++Pb^2++Zn^2+〉Cu^2+.